The Difference between Civil Law and Criminal law
Introduction:
Nobody can deny the law is not an important thing in our lives. Law is necessary in our daily life, and all countries of the world have different laws of their own in government, education, health, and other matters. The laws in our life help us to live life in order. In addition, we use the law in ordinary life and at home in different things, because it is a basic thing, and everyone must accept it and agree on it. On the other hand, in most countries, if someone violates it, he will pay a fine or be imprisoned for violating it, this depends on a law. Where all the countries of the world always strive to establish good laws. Therefore, everyone must abide by the law. The law is divided into two parts, such as criminal and civil law. Civil law is documents and concepts taken from Roman law. Also, civil law includes people and government. Civil law regulates various relationships, including private and legal relationships that have nothing to do with trade, as well as people's relationships with one another, such as special relationships in a personal situation. Also, the criminal law, or as it is called the penal code. The law regulates how to punish anyone who violates a legal rule. Based on the violation, a legal penalty is imposed. It is considered one of the laws related to crimes and penalties that the state sets to deter violations.
Difference between Civil and Criminal Law:
The criminal law is the law that deals with crimes and their punishment while the civil law is what relates to private rights. About the criminal law, legal penalties are set for people accused of theft, arson, assault and murder, while the civil law is concerned with individuals whose rights have been violated by organizations or individuals and cases related to civil law can be resolved. Through a non-criminal trial.
Crimes related to criminal law affect all members of society, while crimes related to civil law belong to one individual and are among individuals about the rights or property of the other person. The criminal law is more dangerous than civil law.
In the civil law, the goal is to restore the rights of its owner or justice between individuals, while the criminal law aims to punish the accused to prevent him from committing crimes again to create a stable society that respects the law. The criminal case is filed by the government, while the civil case is filed by individuals or the organization. In civil cases, both parties have the right to appeal the case while the criminal case allows the defendant only to appeal the case.
Civil cases occur because of a person's recklessness or negligence and not because of a violation of laws or advance planning. For example, when a person slips into a store or shop because workers wash the floor and raise a case against them, it is because of the workers' negligence and not prior planning. In criminal cases, cases occur due to individuals breaking laws, intentionally, or pre-planning. For example, placing toxic substances for a person to kill. There are cases that are considered criminal cases even if no one is harmed, because the perpetrator violated the laws. An example of these cases is gambling, drug use, and property infringement. In civil cases, a person affected by a fall, slip, or property damage can claim compensation.
Important of Civil and Criminal Law:
The civil and criminal responsibility is very important for the society. First is the criminal responsibility which arises from the act of every person that might create a crime under the law text, all of this law is to protect the society from different crimes and the right punishment. The punishment might not be only in the form of compensation it might be in form of painful criminal penalty that affect the person freedom or himself and his money this law is to deter others how things they can harm safety and security of the society. Second is the civil responsibility which is repair the harm that caused for others or animals that is under his responsibility. The aim of this law is to deter the damage that caused to other. criminal law role is to prevent the unwanted conduct and reject the individuals who act against the others in the society causing big harm and prevent crimes before it happens and makes individual’s feel safe because there is a law that takes rights and punishes the criminal. The civil law the important part in the privet law which order the financial legal relationships except for those related to trade and it’s a law that coordinate the relations between people.
Criminal Law and Common Law fill various needs:
The primary role of civil law is to analyze the case and pay material compensation to a person who is psychologically or physically damaged or whose property may be damaged, due to the actions or behavior of another person. On the other hand, the primary role of criminal law is to prevent undesirable behavior and to reject individuals who engage in prohibited and inappropriate acts from society. According to Murray Raff in her 2015 article called “The importance of reforming civil law in formerly socialist legal systems” that in civil law, it is the aggrieved party who files the case. On the contrary, in the Criminal Code, the administration documents the charges and summons the defendants. An aggrieved person can document their objection, but the court administration chooses whether or not to file criminal allegations. In addition, violating the criminal law is considered a major mistake against the state or government
According to Michael Parrington in her 2012 article called “A Short History of the Common Law” that it is a violation of common law and not private law. Most of the cases that are related to private law. In certain cases, a person may be permitted to be eligible to document complaint or objection, and to be reassured about the legal framework to repel crime in general in the indictment, while carrying a joint claim for compensation for damages committed by the aggressor. On the contrary, the level of militancy is higher during the application of criminal law procedures. The state must prove their case “transcends reasonable uncertainty”. The purpose of this complex procedure is on the basis that the situation in which the individual has fallen is categorized as questionable, and the overall conviction that a judgment on a person without feeling blamed and reprimanded is more than regrettable than allowing an individual who is to be blamed for freedom.
Conclusion:
Having examined the important themes about this topic, it can be inferred that the law in general plays a significant role in controlling not only our home life, but the whole world. We have discussed the types of cases which both criminal and civil law deal with and their punishment. We have also discussed the main goal in each criminal and civil law while applying them. Moreover, we got to know the cause of the occurrence of the cases in each law. We saw the definition of Criminal responsibility and civil responsibility and then form of the punishment that the individual will got. Also, we talked about the importance of both criminal and civil law in our society. The basic role of criminal law is to prevent any unwanted behavior from anyone who could affect the safety of the community with his acts. On the other hand, the basic role of the civil law is to repair the harm that caused for any individual in the society. To conclude with, we all agreed that the law in general helps us in arranging and organizing all aspects of our life in all its forms and both civil and criminal law were found to protect everything starting from the property of an individual to the end to the stability and safety of society as a whole.
References:
Editors, E. (n.d.). Criminal vs. Civil Law: Similarities, Differences & Common. Retrieved May 29, 2020, from https://www.enjuris.com/personal-injury-law/civil-vs- criminal-law.html
Erstad, W. (2018, October 29). Civil Law vs. Criminal Law: Breaking Down the Differences ... Retrieved May 29, 2020, from https://www.rasmussen.edu/degrees/justice-studies/blog/civil-law-versus-criminal- law/
5 Differences Between Civil and Criminal Law - The. (2017, June 8). Retrieved May 29, 2020, from http://thecompletelawyer.com/5-differences-civil-criminal-law/
3 Differences Between Civil Law and Criminal Law | GCU Blogs. (2019, September 23). Retrieved May 29, 2020, from https://www.gcu.edu/blog/criminal-justice- government-and-public-administration/3-differences-between-civil-law-and
Murray, R. (2015) The importance of reforming civil law in formerly socialist legal systems. Retrieved Update on November 1, 2015, Pages 24-32, from https://www.sciencedirect.com/science/article/pii/S2351667415000086
Michael, P. (2012) A Short History of the Common Law. Retrieved Update on March 16, 2016, from https://blogs.harvard.edu/mparrington73/2016/03/16/a-short-history- of-the-common-law/
Scientific Revolution
Introduction
The scientific revolution occurred during the early modern period when advances in chemistry, physics, biology, astronomy, and mathematics shifted societal perspectives on nature. The scientific revolution has its roots in Europe. It occurred near the end of the Renaissance and lasted until the late eighteenth century and greatly influenced the Enlightenment intellectual, social movement. In the middle ages, the scientific revolution had its foundations on ancient Greek learning and science, which had been developed and refined by medieval Islamic and science Roman science. During the scientific revolution, the importance of experimentation to the scientific method was confirmed, as medieval scientific philosophy was rejected and the new theories proposed by Galileo, Newton Descartes and Bacon favored.
The scientific revolution started in Astronomy before quickly spreading to other fields (Schuster, 2020). Despite earlier discussions suggesting that the Earth was in constant motion, Nicolaus Copernicus, a renowned Polish astronomer, proposed the first comprehensive heliocentric theory equal in scope and predictive capability to Ptolemy’s geocentric system. The Roman Catholic Church was powerful during the revolution. The society looked up to the Church before the birth and development of science, and they believed everything the Church taught. After the unfolding of the developments in science, the Church was in constant conflict with science (Karagözoğlu, 2017). There were two reasons for the disagreement between scientists and the Church. One reason was that scientific philosophies ran counter to Church doctrines. The second reason was that church leaders believed that people who disagreed with Church teachings weakened the Church. For this reason, the scientific revolution quickly spread to physics as there were serious conflicts with what the Church stated concerning astronomy.
Curiosity, investigation, discovery, and knowledge were encouraged during the Renaissance. People’s old beliefs were also called into question. Scientists began using experiments and mathematics to solve mysteries during this time. Curiosity, for instance, was one of the reasons for the utility of science during the scientific revolution. People wanted to know how and why things were the way they are. Other reasons given for the utility of science during the scientific revolution is alchemy. There was a growing interest in alchemy during this time. People were inspired to explore alchemy and find out the workings of nature. The state of civilization after the industrial civilization is referred to as industrial civilization and was characterized by the use of powered machines and other inventions (McClellan & Dorn, 2015).
Capitalism was one of the economic factors that led to the inventions necessary for the industrial revolution. The industrial revolution needed enormous financial inputs from individuals rather than the government (Vries, 2008). Wealthy entrepreneurs were crucial because they used their fortunes to fund factories that required inventions. Without the emergence of capitalism, this investment from individuals guided by the profit motive would not have been possible. Theories played an important role in the inventions during the industrial revolution because they guided scientists on how these inventions should be developed. During the 19th century, theoretical science played an important role in industry and engineering. Scientific theories provided the basis for inventions in both industry and engineering. These theories guided engineers in developing machines and devices that helped in the revolution.
Conclusion
The scientific revolution was characterized by advances in science. It started in astronomy but did not last as it brought serious conflicts with the powerful Roman Catholic Church. Curiosity was one of the main reasons why science was utilized during this period, as scientists wanted to explain natural phenomena. The industrial revolution, on the other hand, was sustained by inventions that were triggered by factors like capitalism. During this time, scientific theories played an important role in inventions.
References
Karagözoğlu, B. (2017). Brief History of Western Modernization. In Science and Technology from Global and Historical Perspectives (pp. 185-203). Springer, Cham
McClellan iii, J. E., & Dorn, H. (2015). Science and technology in world history: an introduction. JHU Press.
Schuster, J. (2020). The Scientific Revolution. 10.1201/9781003070818-21. Vries, P. (2008). The Industrial Revolution.
Physics and Gastrointestinal System
Abstract
This essay sets out to explore what was learned through researching the sources needed for the presentation on linking physics to the gastrointestinal system. As physics is an applicable and physical science as well as a theoretical science it can be applied to a wide range of systems both biological and manmade. This Essay sets out to explore not only what was learned but the connections made.
Keyword: Physics, biological, essay, explore
The System
We often think of systems as man made or non-biological such as a computer, a power station, or even the electrical system of our cars when they break down; rarely do we think of biological systems and a bit closer to home the biological systems that we depend on daily and each moment to keep us alive. The gastrointestinal system is a system that doesn’t just include the stomach and intestines, it’s a system that stems through three biological cavities. The cavities it spans are the cranial, thoracic, and abdominal; the reason for this is due to the fact that the gastrointestinal system starts with the mouth and nose and ends with the rectum. What I learned through my research for this presentation was the very real ways in which the human body is a system that the rules and laws of physics touch.
The Physics
Throughout my research I noticed that there where a few recurring physics related subjects that arose and could be applied to the GI system. I learned more about velocity, feedback loop systems both negative and positive, and pressure. These three things span many other systems to be sure but for today the focus will be on the GI system. A feedback loop system is a system that is either negative or positive, a positive example of a feedback loop in the human body is the GI system as its goal is to maintain homeostasis. A negative feedback loop can also be found in the body in the form of the human immune system which attacks and removes invading bacteria and pathogens so that they cannot harm the entire body.
Velocity came into use through the fact that velocity is “ a measure of a fluid’s resistance to flow” (Princeton University, 2019” this came into handy when understanding the reasons for constipation as food is digested and passed through the small and large intestine on it’s way to the rectum if there isn’t enough liquid or lubrication on can end up constipated. Most of us think nothing of constipation in our modern era of remedies that can be bought at the local supermarket or garden but before the modern era it could cause death. Henry VII suffered from constipation throughout his reign and it is believed by some historians that it played a part in his death due to his habit of binge eating even when he hadn’t made a bowel movement. When the digested food sits in the large intestine it is exposed to bacteria and starts to ferment thus creating not only a more solid mass but also gas. This gas and collection of solid mass is known to anyone who has experienced constipation as the discomfort that follows being constipated but in extreme cases it can prove to be dangerous to the intestines by causing them to tear and to the rectum as pushing can also cause them to tear and bleed thus leaving one more open to infection.
Conclusion
In closing I learned a great deal about the bodily systems and how physics something I thought of as abstract and not related to the biological functions of the body could help me understand the body a great deal more. This presentation even helped me understand the symptoms and benefits that I have been able to enjoy due to undergoing gastric bypass surgery.
References for both the paper and presentation
Cabane, B., & Vuillmueire, R. (2004). The physics of liquid water. Retrieved from https://www.sciencedirect.com/science/article/pii/S1631071304002780
Cleveland Clinic. (2019). Esophageal Manometry. Retrieved from https://my.clevelandclinic.org/health/diagnostics/4952-esophageal-manometry-test
David Hu,Patricia Yang,The Conversation. (2017, May 6). The Physics of Poop. Retrieved from https://www.scientificamerican.com/article/the-physics-of-poop/
Harvard Health Publishing. (2018, July 13). The gut-brain connection. Retrieved from https://www.health.harvard.edu/diseases-and-conditions/the-gut-brain-connection
Princeton University. (2019). DEFINITION OF VISCOSITY. Retrieved from https://www.princeton.edu/~gasdyn/Research/T-C_Research_Folder/Viscosity_def.html
Ridgeway, C. (2018, July 16). The Physical Decline of Henry VIII by Sarah Bryson. Retrieved from https://www.tudorsociety.com/the-physical-decline-of-henry-viii-by-sarah-bryson/
Sci. (2019). Large intestine function. Retrieved from https://www.sciencelearn.org.nz/resources/1832-large-intestine-function
The Impact of Physics 244 on Understanding Modern Physics
Physics 244 is a crucial course as it explains more about the modern physics and how carry out certain experiments in the laboratory. Ideally, this course offers the students a chance to learn practical application of different concepts in physics. In this way, they are able to engage microscopic world and learn various elements, such as electrons and atoms among others, and how they influence the physical world. Through laboratory sessions, students are able to comprehensively understand the qualities, characteristics, and application of these elements in to daily activities and objects. Therefore, theoretical and practical experience will equip the students with the necessary knowledge to learn more about electrons, atoms, nuclei, and molecules, which have a significant impact on the physical world.
Typically, the laboratory experiments provide suitable knowledge for students to have a broader perspective regarding the modern world, as well as gaining an understanding on different scientific concepts. Such opportunities will also help me to have a clear understanding of all the ideals and concepts leant in this course. Technically, laboratory experiments represents an ideal environment for students to apply and gain important knowledge, which they can use to develop other crucial concepts and scientific materials. These experience help students to gain essential skills not only in the academic atmosphere but also in real life; therefore, making students develop all-rounded life skills.
Teamwork in performing scientific experiments is an ideal strategy that students can utilize to gain more understanding involving the microscopic world. Working as a team appears to have added advantages compared to working alone. The primary objective of teamwork include having similar purpose, which assist members to execute certain tasks more accurately and on time. Therefore, unity is achieved as they work to accomplish a common goal. Moreover, working together as a team brings out collaboration where the work is done, and it is performed faster. Additionally, working as a team, creativity is achieved. Working together brings out positivity in terms of attitudes and work ethics are promoted which results in exploring more options. Besides, working as a team assist the team members to have developed clear tasks and deadlines when they want to finish their works. For instance, in the when working as a team in the lab experiments, experiments can be performed in a more effective manner and within a short duration if the tasks are shared among the team members. In such cases, all the data, the required information and the findings are usually compiled together. Furthermore, working together as a team during laboratory experiments the constraints experienced are removed which can hinder the team members from achieving the required results. In case one of the team members have a little understanding concerning a specific laboratory experiment, he or she may be guided by other team members who have proper knowledge of the laboratory. Another benefit of working as a team during laboratory experiment is that the group members can appreciate their strengths and weaknesses in certain areas; therefore they get help from each other. Working with peers usually is more productive as they typically understand each other as compared to when the instructor's student relationship is involved. Another advantage of working as a team is that students are prepared to face the real world situations where individuals cannot perform some tasks. In this case, they will help one another be able to complete the task which is likely to take an individual longer time before he or she finishes the work. Working as a team also assists the students in giving and being able to follow orders and influence others to be responsible and committed team players. Besides, team members usually become responsive as it becomes easy for them to adopt changes.
Typically, the following laboratory policies play a very crucial role in the laboratory area.
For example, a particular policy for the students to always follow instructions when in the laboratory can play a significant role in preventing them from endangering themselves as well as other students. Moreover, the following guidelines help in preventing the students from ruining the experiments which are being performed. The cases of accidents to occur in the laboratory are also put at the minimal which are likely to cause damages to the equipment and eventually causing harm to the students. As a student when one fails to follow instructions he or she may stand a chance of being suspended from school; therefore policies play a significant part.
Additionally, knowing the location of the safety equipment is also a lab policy that should be followed. This policy will assist the students in being aware of where the laboratory equipment are stored and their uses. Students will also be able to check whether the equipments are in the working order. Dressing appropriately for the lab is also an important policy that should be followed. Proper dressing for the lab experiments will help in preventing injuries in case an accident may occur in the laboratory. For examples, during performing laboratory experiments there are great dressing that should be worn.They include the following; protective gear is one of them, gloves and hearing protection, as well as protective clothing.
Drinking or Eating in the laboratory is another crucial policy that should be followed. Eating in the laboratory is prohibited as there is the likelihood of the food being contaminated with chemicals as well as experiments. Moreover, when dining in the lab, it is likely to disrupt students as they perform; therefore, it is not advisable.
Another laboratory policy that should be followed involves disposing of the waste after the experiment is done. It is not right to leave the waste after the experiment is done for the next student to clean them. Additionally, knowing what to do in case an accident in the laboratory occurs is very crucial. For example, students are usually advised to inform the instructors in case such an accident happen.
Experiment entails the coulomb balance. Therefore, the objective of the lab was to assist the students in gaining an understanding of how the Coulomb law works through taking measurements of the force between two charged spheres as a function of distance. Additionally, the lab was aimed at investigating the impact of systematic errors found on the measurements. Furthermore, at the end of the experiment, the students would be able to understand the challenges of modeling real charged systems as point charges. Therefore, the required equipments include the coulomb torsion balance. In this case, there was the placing of the balance in place as demonstrated in the figure below.
Additionally, the twisting of the wire back again was done by the experimenter to accomplish the equilibrium. The high voltage was employed in charging of the identical spheres. The experiment was used to confirm the coulomb that was studied in class. The Coulomb law discusses about the existing force between two charged particles.
In experiment 2, field mapping was covered. The primary purpose of the lab was to learn how the electric field can be mapped in regards to the field lines as well as the exponential surfaces. Additionally, the experiment was aimed at assisting the students in learning how they can determine the field magnitude as well as its direction by measuring the potential gradient.
Besides, the aim of the experiment was also to do away with assumptions on the theoretical models on charge distribution by working with real objects. In this case, the equipment and apparatus required for the lab include a digital multimeter which is denoted as (DMM).
Therefore, the DMM was employed in measuring the potential difference at different points. Additionally, the conductive surface with electrodes was also required. Besides, a power supply and a recording material which in this case a graph paper was necessary. When measuring the potential difference, the ground is considered, and the negative terminal is supposed to be always connected to the ground. Therefore, the impacts of how the charge is distributed can be realized by using the electric fields. From the results and the graph which was drawn from the results, the potential difference represents the gradient of the electric potential. Moreover, the magnitude of the electric field is used to determine how fast the electric potential is. Typically, the electric field moves from the more substantial potential to the lower potential. The electric field is visible on the electrical field lines. The students were given a warning not to put any mark or write on the conductive surface to prevent from interfering with the uniformity of the conductive paper.
In experiment four, it involved electrostatic capacitance. The experiment explores how Guss law is applied to the conductive object. Additionally, the lab is aimed at exploring the relationship of the charge stored in a parallel plate capacitor and its geometry. Apparatus and equipment include a source of charge, a proof of plane as well as an electrometer. The experiment was conducted with guidance provided and the help of the lab technician.
Additionally, the teams were cautioned not touch any conducting material directly as it may be under high potential. The topic assisted the students in understanding the topic of capacitance better. Therefore, they were able to utilize those concepts learned in class in real life.
In experiment 5 it was on resistance and on the measurement. The objective of the experiment was to equip the students with knowledge on how they can measure strength by employing the Wheatstone and the multimeter. Additionally, it would also assist the students in determining the resistivity of the material. Therefore, the Wheatstone bridge was utilized in measuring the unknown resistance accurately. Digital multimeter was also an essential part of the experiment. The following equation is necessary for the experiment.
R= ρ L A
Where;
L= length
ρ= resistivity
A= cross sectional area
In experiment 6, it involves measuring the current in a multiloop circuit and comparing them with the values of the current that was calculated. The experiment is based on the principle Of Kirchhoff's rules. Therefore, this rule tells about the sum of the currents in a junction that adds up to zero. In this lab, a circuit which has known values of resistance is built in the protoboard. Using the circuit, the current as a function of the voltage at different locations were measured. A graph was plotted for emf against the current to help in determining if the slope was equal to the resistance values of the resistors. The concept of electric potential and an electric field is applied in this experiment. The electric potential infers to the potential energy per unit charge. Therefore, finding the potential difference, determining the work on a unit charge was done. The work performed represents the potential difference between the final as well as initial points. The concepts of this experiment are fundamental in the day to day engineering activities in the field of design of electric circuits. Additionally, the idea is employed in troubleshooting for electronic faults in electronics and the electrical circuits with a mesh loop topology.
In experiment seven it is about the Rc circuits. Then the lab aims to explore the discharge behavior of an RC circuit. Therefore, it would involve, measuring the value of the capacitor from the discharge feature of the RC circuit. Finally, the experiment aims at applying the LCR Bridge when measuring the capacitance. For an RC circuit, a capacitor charges when a voltage source is connected to the capacitor. The charged capacitor can discharge through the resistor when the voltage source is disconnected. Thus, the law of the. Kirchhoff’s voltage can be employed in finding the expression of the voltage drop across the capacitor.
In the lab, a known value of the resistor was employed in discharging a capacitor. The capacitor was connected to the circuit and as the capacitor was being removed. Then the drop in voltage was recorded for every 20 seconds. Additionally, a graph of the natural log of voltage drop initial voltage was plotted whose slope would provide the inverse of the time constant of the RC circuit. An RC circuit is an essential component of power automatic regulation devices. The discharge and the charging of the capacitor are employed as inverters to help in smoothening of the output voltage. The capacitor is also employed in reactive power regulation. Additionally, the capacitor bank is applied in control of the reactive power. The capacitor plates are the same as electric dipoles. Additionally, some charges exist of equal size with opposite charges in the plates of the capacitor. Some distance, d separate the charges.
The experiment is about the e/m apparatus, electron source, glass bulb, and Helmholtz coils to measure the mass charge ratio of an electron using the deflection of particles in a magnetic field. This lab represents the velocity selector application. Additionally, the mass charge ratio was determined at the point when the magnetic force exactly cancels with the electric force. The equation of the motion of the electron in a magnetic field helps in determining the expression of the ratio of charge to mass. Besides, the experiment of the measurement of e/m needs a good knowledge of the magnetic field. Moreover, the equation of the motion of an electron represents a magnetic field to what was covered in class in assisting in determining the forces in the magnetic field. Therefore, the equation begins from the Lorentz law. In determining the charge to mass ratio that may be utilized in mass spectrometry. In such an instance, the mass of a particle can be determined by studying the electron charge of the particle.
Experiment 10 is about the law of Faraday. The objective of the experiment is to investigate the generation of the electromotive force found in the coil when it is exposed to a time-dependent magnetic field. Additionally, the experiment examines emf which is produced in a rotating coil in a fixed magnetic field. The experiment is base on Faradays’s represents the emf induced expression. Usually, an emf is generated when the electromagnetic is induced.
Therefore, the produced emf is provided by;
E=−N d ∅
dt
In this case, N represents the number of loops found in a coil. Additionally, ∅ it means the magnetic flux and dt is changed in time. The knowledge of magnetism and the magnetic field is used in this experiment. Then the experiments that are employed in the experiment are obtained from the equations of Maxwell and Helmholtz. Additionally, Lens’s laws support the continuity of the generation of emf. This experiment is very crucial in electrical engineering as the electric energy is produced basing on the law of Faraday.
Works Cited
Nilsson, James William, and Susan A. Riedel. Electric circuits. Upper Saddle River, NJ: Pearson, 2015.
Potkonjak, Veljko, et al. "Virtual laboratories for education in science, technology, and engineering: A review." Computers & Education 95 (2016): 309-327.
Szabó, Zoltán. "The history of the 125 year old Eötvös torsion balance." Acta Geodaetica et Geophysica 51.2 (2016): 273-293.
History of Science in the 20th Century
Over time, science has bolstered the process of understanding the universe through knowledge organization, hypotheses testing, and multiple predictions over the future of the earth. These advancements keep on changing as scientists acquire new skills and techniques for conducting their researches. The earliest scientific evidence is traceable to the 3000 BCE in regions such as Mesopotamia where the Greek began introducing various ideologies to explain topics such as mathematics, religion, and the astronomy. With this background, this paper will focus on primary sources of literature to outline the history of science in the 20th century and the varied political, social, and cultural contexts.
The 20th century marks one of the greatest periods in the history of science. The era is remarkable for the immense contributions in all research fields. These efforts are attributable to other factors such as the diverse study methods available to the researchers and the integration of technology in major aspects of life. Each investigation is largely focused on meeting some multidisciplinary demands that can push people to infinity and progress the developments made in the past era. The 20th century, therefore, makes attempts to understand the working of the universe. Illustratively, science in this period is characterized by initiatives such as the human landing on the moon by Neil Armstrong in 1969 (Kennedy, 1963, 1). The Academy of Science has also played an indispensable role in outlining predictability in the field, the evolution of species, the human brain, and astronomy. As a result, 20th-century science aimed at enhancing the knowledge of the human race. More in-depth questions are being raised like the origin of physics and its influence in modern times. For instance, there is an increased understanding of the universal structure, matter and its components, and the guiding principles on notions such as motion. The Newtonian laws and theories have led to the development of advanced weapons most of which are nuclear. As a result, there has been the development of astrophysics that unifies the various physics’ concepts.
Astronomy
In astronomy, there was a greater space exploration that resulted in a deeper grasp of evolution. Ideologies such as the Big Bang theory were popularized with scientists discovering more planets in the universe. Pluto was identified as the smallest planet but was soon cut out as a planetoid. Further, researchers discovered that life was inexistent in the other heavenly bodies.
However, the concept was still underdeveloped since the 21st century has led to the possibility of life in Mars. People like Victor Safronov wrote publications with several astronomical questions that have since been resolved by new advancements. The landing on the moon mission was propelled by the tensions between America and Russia. Additionally, more nations became involved in the occasional space probe in which artificial satellites roamed the earth’s space without the engagement of any human onboard. These actions improved military intelligence, climate monitoring, communication, and geographic analysis among other crucial fields.
Gibson Roy, the Director-General of the European Space Agency explains in an interview that the rise in the use of nuclear weapons led to the International Atomic Energy Agency discussions to ensure that all the countries involved adopting safer practices (Gibson, 2010, 1).
He further outlines that such scientific developments led to suspicions due to the involvement of Russia and America. There were also concerns over the wellbeing of the employees working in the delegation and the need to join the European Space Research Organization for a better overview of scientific matters.
Biology
In biology, the 20th century has seen the growth of genetics through the use of DNA. Researchers have been able to identify the life processes and gene mutation to aid in explaining the diversity of organisms and to prevent others from destruction. The scientists were able to clone a mammal towards the end of the century through an analysis of the gene sequencing and the Human Genome Project. Sexual reproduction and its role to organisms were better understood and concepts such as bacteria became common. Antibiotics were then popularized to minimize the mortality rates caused by these organisms. Doctors have been successful in eradicating disease like polio. More vaccines were developed for conditions like measles, influenza, chickenpox, hepatitis, tetanus, and diphtheria, among other diseases. Multidisciplinary actions have helped in elaborating evolution, and thus it is now possible to conduct tests through placebos, randomized control trials, and other advanced research methods. Tools such as X-rays became popular in the diagnosis of diseases ranging from infections to cancers. Soon enough, the scientists developed more diagnostic options like magnetic resonance imaging. Treatments also improved for conditions such as mental health illnesses with more centers and antipsychotics for depression and hallucinations. Science in the 20th century also included the acknowledgment of hazardous drugs like tobacco linked to the escalation in cancer cases. Other hard substances that were finally illegalized included cocaine and heroin. As a measure, their prices increased tremendously, but addicts turned to black markets for the same products. As a result, there was a need for more research into the effectiveness of chemotherapy and immunotherapy.
Considerations like tissue typing, blood transfusion, organ transplants, and immunosuppressive drugs were also accepted despite the resistance from some members of the church who perceived the act as detrimental to the sanctity of life. People could get artificial hearts through pacemakers and hence they could prolong their lives. Some of the notable figures linked to the biological development include Joseph Needham, a biochemist and embryologist. Needham is remembered for his contribution to induction in embryos and the numerous publications he wrote during his visits to China. His efforts aimed at bridging the gap between Europe and Asia resulted in the rest of the world learning more about the Chinese and their civilization (Navis, 2007, 1). The University of Cambridge Digital Library supports the role played by Needham through an illustration of pictures for his visit from the Northwestern part of Chungking to Djiayukuan in Ganzu province (Needham, 1944, 1). Finally, the history of science in the 20th century involves the identification of new farming methods. These practices included the genetic modification of seeds to make them resistant to damage by pests and diseases. This measure would in turn increase the likelihood of a good harvest. Such improvements meant that the population would have more food for sustenance in both the rainy and dry seasons. Unfortunately, there was an unexpected population increase forcing researchers to develop contraceptives as a population growth control measure. This move foresaw the rise in premarital sex especially in regions where such acts were forbidden. Generally, improved hygiene led to a minimization of mortality rates among communities.
Information Technology
In information technology, data has become a valued commodity with many aiming to communicate better with their friends, family, and colleagues. Further, they seek to stay in touch with current trends. The integration of technology in the 20th century has led to the discovery of new treatment choices in the medical field. Previously life-threatening ailments are manageable through safer practices like organ transplants and the use of robots in various forms of therapy. Technology has also ushered in airplanes, electricity, and various forms of automobiles. The Whittle Power jet Papers affirm the role played by individuals like Frank Whittle in ensuring that people enjoyed the luxury brought about by the use of turbo-jet engines (Evans, 2016, 1). The approach works by guaranteeing propulsion from the ejection of gas from an engine’s nozzle. This innovation was an improvement to the former piston engines and is held in high regard especially since it was developed during a war. Despite coming from a humble background, Whittle was determined to see his dreams actualize and consistently put in the work to prove his thesis on the future of airplanes.
Chemistry
In Chemistry, the era began with an invention of the chromatography as an analytic element. It was also discovered that atoms contain electrons in the nucleus. With the knowledge in atomic structures, Fritz Haber established the Haber process essential in the production of Ammonia through the combination of hydrogen and nitrogen. The product was utilized in fertilizers and thus contributed to the world food supply. Haber is also known for the introduction of chemical warfare in which poisonous gases were used as weapons during wars. After his era, Albert Einstein helped in confirming the atomic theory through Brownian motion. Subsequently, others suggested alterations to the atomic structure models which contributed to the creation of products such as plastic which have adversely damaged the environment specifically the marine life. The century also comprised of studies like the oil drop experiment to assess any variations in the electron's charges in multiple atoms. Einstein’s proposal on the relationship between timing and energy led to the development of a photoelectric reinforcement in analyzing Planck’s concept. Scientists identified the methods of gauging acidity and employed the periodic table through a proper organization of atoms in various compounds. The art of crystallography explained the crystalized structure of some items. It is also during this era that quantum mechanics became popularized. Bohr stated that electrons existed in orbits Justas the planets revolved around the sun. The negatively charged electrons often orbit a positively charged nucleus.
Concerns
These scientific developments in the 20th century have also raised many concerns such as the role of science in society especially with the environmental changes that make the earth more vulnerable to extinction. Key to this question is the follow up on ethical considerations and the focus on cultural or religious thoughts even as science seeks to improve communities.
Nonetheless, the concept has grown to more of a human need and right as compared to previous years. A publication edited by Toss Gascoigne and colleagues presents the growth of science as a key solution to many of the problems the world faces (Broks et al., 2020, 2). As a result, more people are speaking upon the need for the communication of any findings while countries are investing many resources to ensure that their countries have the best research facilities. The book further outlines the unfairness in the access to study material as only the rich nations have been able to meet the scientific materials’ costs of production (Broks et al., 2020, 10). The disparity is echoed by a photo of a science class in Brazil as captured by the United Nations Educational, Scientific, and Cultural Organization (UNESCO) (HOSLAC, 2011, 1). The students studying Biology have in the past lacked the exposure to some of the instruments ready to promote scientific innovation. The hope in the picture affirms that the education system in Brazil focuses on other courses such as mining, applied sciences, agriculture, and engineering. Even though these courses are vital, Brazil cannot be classified in the same state as those with an active engagement in research initiatives. Further, the students end up losing focus in scientific courses due to the high possibility of unemployment upon their completion. The book, therefore, resolves to collect as much scientific communication from around the globe to gain the equality necessary in the field. Also, the aim is to expose more people to science despite the numerous volume of available content. Through knowledge creation, these individuals will be educated to address important matters like environmental conservation, healthcare delivery, and the successful integration of technology in all industries.
Apart from the mentioned categories, the primary sources on the history of science in the 20th century have proven the effect on contexts namely the social, political, and cultural.
Politically, they prove the uneven growth in government structures as influenced by aspects such as war. Most of the figures interested in governance ended up becoming presidents while others are remembered for their sober inputs into issues influencing the existing social facts and realism in understanding human beings. A key contribution is a publication titled The Process of Government by Arthur Bentley. This 1908 article is instrumental in opposing abstractions for a more observable approach determined by different groups. How each of these groupings interacted pre-established the laws, leaders, and population behaviors and reactions. Other philosophers came up with the reconstruction method in which statistics would be used to enhance the findings made by the observations. Alternatively, there was the quantification of human elements such as the subconscious and rationality for a more concise inference on political behaviors. There are issues with the politicization of science in situations such as the bombing of Hiroshima and Nagasaki (Burr, 2005, 1). The atomic bombs used as a means to end the pacific war and meet the interests of the American population still has a great impact in modern times due to its ethical concerns. Many people lost their lives even though it is clear that the Japanese wanted to surrender before the bombs were dropped on their land. The primary sources include intercepted communications of the emperor’s intentions (Burr, 2005, 1). Many have been left wondering whether there would have been a different outcome in case the course of action was delayed or stopped altogether. Culturally, some of the scientific developments modified the cultural practices of the communities by viewing their actions as outdated.
According to Bud et al. (2018), many people were inclined to artistic presentations as the core exclamation points for various phenomena until mathematical expressions became them the viable way of comprehending concepts (14). Fortunately, the emergence of new developments was akin to the creation of new traditions in which more people were interested in notions such as technology, modern architecture, and engineering. These effects translate into the social sphere in which the primary literature sources present the increased interactions among individuals due to the need to communicate scientific findings. Also, individuals recognize the impact of emerging technologies and strive to ensure that the benefits of existing science outweigh the risks.
In conclusion, the primary sources were elaborative on the history of science in the 20th century. Before the era, science was still instrumental in helping human beings understand different facets of their universal existence. Dating back to the domination of the Greek, people have always been inquisitive to know more about the planet and other heavenly bodies. Science in the 20th century is evident in all many fields such as astronomy, biology, chemistry, and information technology. The medical system has seen major developments in the available treatment options while there is an increased variety of food products through genetic modification attempts. However, the primary sources also highlight issues such as the impact of climate change due to the adversity caused by the use of plastics. Also, the atomic bombing of Hiroshima and Nagasaki whose effects are still evident in current times. It is therefore important to ensure that scientific developments are in reasonable measures for the sustainability of populations.
References
Broks, P., Gascoigne, T., Leach, J., Lewenstein, B.V., Massarani, L., Riedlinger, M. and Schiele, B., 2020. Communicating Science: A Global Perspective.
Bud, R., Greenhalgh, P., James, F. and Shiach, M., 2018. Being modern: the cultural impact of science in the early twentieth century (p. 438). UCL Press.
Burr, W., 2005. The Atomic Bomb and the End of World War II A Collection of Primary Sources. The Atomic Bomb and the End of World War II: A Collection of Primary Sources. Available at: https://nsarchive2.gwu.edu/NSAEBB/NSAEBB162/index.htm [Accessed December 8, 2020].
Evans, R.L., 2016. Peterhouse: Peterhouse, Whittle Power Jet Papers. Available at: https://cudl.lib.cam.ac.uk/view/MS-WHITTLE-00001/1 [Accessed December 8, 2020].
Gibson, R., 2010. Oral history of British science. Sounds. Available at: https://sounds.bl.uk/Oral- history/Science/021M-C1379X0019XX-0005V0 [Accessed December 8, 2020].
HOSLAC, 2011. Teaching the Basic Sciences in Brazil. HOSLAC. Available at: https://mypages.unh.edu/hoslac/book/teaching-basic-sciences-brazil [Accessed December 8, 2020].
Kennedy, J.F., 1963. We choose to go to the Moon. Speech presented at Address at Rice University on the Nation's Space Effort in Rice University, Houston (1962, September 12).
Navis, A.R., 2007. Joseph Needham (1900-1995). Embryo Project Encyclopedia.
Needham, J., 1944. Joseph Needham: NW - Northwest journey. Cambridge Digital Library.
Available at: https://cudl.lib.cam.ac.uk/view/PH-NRI-00002-00010-00001-00001-00002 [Accessed December 8, 2020].