Fill This Form To Receive Instant Help
Homework answers / question archive / University of California, Los Angeles - ECON 103 BEGINNING ECON103 EXAM PART 1: TRUE/FALSE/EXPLAIN 1)When we drop a variable from a model, the total sum of squares (TSS) increases
University of California, Los Angeles - ECON 103
BEGINNING ECON103 EXAM
PART 1: TRUE/FALSE/EXPLAIN
1)When we drop a variable from a model, the total sum of squares (TSS) increases.
PART 2
You estimate the following linear probability model by OLS:
Ji = 0 + 1GPAi + 2Femalei + 3GPAi ? Femalei + 4Blacki + 5GPAi ? Blacki + "i,
where Ji is a binary variable equal to 1 if student i obtained a job o↵er within 2 months of
graduating from UCLA and equal to 0 if he didn’t.
PART 3
A researcher is studying the relationship between the time spent watching TV and people’s attitudes towards immigration.
She has interviewed a random sample of individuals, asking them how many hours of TV they watch every week and whether they think more immigrants should be allowed into the country.
The following table is a summary of her data. Cell entries (except in the final row) are column percentages:
|
|
Hours spent watching TV ( H ) |
||
|
|
Less than 5 |
5 or more |
All |
More immigrants should be admitted ( A ) |
Yes No |
0.42 0.58 |
0.19 0.81 |
0.34 0.66 |
Sample size |
|
200 |
100 |
300 |
Suppose the researcher has asked you for help running her econometric analysis and has provided you with her data. Follow the steps below to analyze them:
1. Write down the linear regression model you would use to estimate the e↵ect of hours of TV watched on the willingness to allow more immigrants into the country (call this e↵ect 1).
We’d expect ˆ1 to be negative, as increasing the numbers of hours of TV watched seems to decrease the tolerance for immigrants.
Would this raise concerns about your estimate of 1? Why? .
:
PART 4
You are trying to determine the e↵ect of social security on individual saving decisions in order to advise the President. You have data for a representative sample of the population that includes information on the level of social security benefits, individual income, and annual savings.
Part 5
The following dataset contains information on students in a class. The data is as follows:
Obs: 680
attend classes attended out of 32
termgpa GPA for term
priGPA cumulative GPA prior to term
frosh =1 if freshman soph =1 if sophomore junsen =1 if junior or senior
Note that all students are either a freshman, sophomore, junior, or senior, but no student can be more than one.
sum
Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- attend | 680 26.14706 5.455037 2 32 termgpa | 680 2.601 .736586 0 4 priGPA | 680 2.586775 .5447141 .857 3.93 frosh | 680 .2323529 .4226438 0 1 soph | 680 .5764706 .4944814 0 1
reg termgpa frosh soph
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 2, 677) = 7.29
Model | 7.76373509 2 3.88186754 Prob > F = 0.0007
Residual | 360.633802 677 .532693946 R-squared = 0.0211
-------------+------------------------------ Adj R-squared = 0.0182
Total | 368.397537 679 .542558964 Root MSE = .72986
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- frosh | -.1359634 .0864241 -1.57 0.116 -.3056549 .0337281 soph | .1224413 .0738685 1.66 0.098 -.0225977 .2674802 _cons | 2.562008 .0640129 40.02 0.000 2.43632 2.687695
------------------------------------------------------------------------------
. reg termgpa attend
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 1, 678) = 309.40
Model | 115.436802 1 115.436802 Prob > F = 0.0000
Residual | 252.960735 678 .373098429 R-squared = 0.3133
-------------+------------------------------ Adj R-squared = 0.3123
Total | 368.397537 679 .542558964 Root MSE = .61082
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- attend | .0755857 .0042971 17.59 0.000 .0671484 .084023 _cons | .6246566 .1147732 5.44 0.000 .3993031 .8500102
------------------------------------------------------------------------------
. reg termgpa attend priGPA
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 2, 677) = 371.21
Model | 192.687884 2 96.3439422 Prob > F = 0.0000
Residual | 175.709652 677 .259541584 R-squared = 0.5230
-------------+------------------------------ Adj R-squared = 0.5216
Total | 368.397537 679 .542558964 Root MSE = .50945
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- attend | .0463716 .0039639 11.70 0.000 .0385886 .0541547 priGPA | .6848606 .0396966 17.25 0.000 .6069173 .7628038 _cons | -.3830615 .1121398 -3.42 0.001 -.6032451 -.1628779
------------------------------------------------------------------------------
Omitted variable bias.
Hence the coefficient on attend in the first regression was biased due to the omission of the cumulative GPA (it was biased upwards, i.e. was too high).
Once we separately controlled for the effect of the cumulative GPA, the (now unbiased) coefficient on attend became lower.
. reg termgpa attend priGPA frosh soph
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 4, 675) = 186.13
Model | 193.220488 4 48.305122 Prob > F = 0.0000
Residual | 175.177049 675 .259521554 R-squared = 0.5245
-------------+------------------------------ Adj R-squared = 0.5217
Total | 368.397537 679 .542558964 Root MSE = .50943
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- attend | .0456313 .0039993 11.41 0.000 .0377788 .0534837 priGPA | .7018152 .0421139 16.66 0.000 .6191251 .7845053 frosh | .0869786 .0620993 1.40 0.162 -.0349525 .2089097 soph | .0321174 .0516699 0.62 0.534 -.0693357 .1335705 _cons | -.446286 .1212573 -3.68 0.000 -.6843729 -.2081992
------------------------------------------------------------------------------
9. Would you reject the null hypothesis that the coefficients on attend, priGPA, frosh and soph are all jointly equal to zero?
. gen fr_attend=frosh*attend
. gen soph_attend=soph*attend
. reg termgpa attend priGPA frosh soph fr_attend soph_attend
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 6, 673) = 124.43
Model | 193.744059 6 32.2906766 Prob > F = 0.0000
Residual | 174.653477 673 .259514825 R-squared = 0.5259
-------------+------------------------------ Adj R-squared = 0.5217
Total | 368.397537 679 .542558964 Root MSE = .50943
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- attend | .0552681 .0081861 6.75 0.000 .0391948 .0713414 priGPA | .7026836 .042133 16.68 0.000 .6199557 .7854115 frosh | .4749743 .2936508 1.62 0.106 -.1016077 1.051556 soph | .3148917 .2459288 1.28 0.201 -.1679882 .7977717 fr_attend | -.0150505 .0111231 -1.35 0.176 -.0368907 .0067897 soph_attend | -.0109867 .0093063 -1.18 0.238 -.0292595 .0072861 _cons | -.6957827 .2217804 -3.14 0.002 -1.131247 -.260318
THE FOLLOWING QUESTIONS REFER TO THE REGRESSION ON THIS PAGE
10. Set up the F-statistic for the null hypothesis that the interaction terms are all equal to zero. What is the critical value you would compare it to (use a 5% level of significance, and check the critical values provided on the first
page of the exam)?
11. What is the interpretation of the interaction term fr_attend?
Part 6
Consider again the following regression (for the same variables as defined in the previous exercise):
. reg termgpa attend
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 1, 678) = 309.40
Model | 115.436802 1 115.436802 Prob > F = 0.0000
Residual | 252.960735 678 .373098429 R-squared = 0.3133
-------------+------------------------------ Adj R-squared = 0.3123
Total | 368.397537 679 .542558964 Root MSE = .61082
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- attend | .0755857 .0042971 17.59 0.000 .0671484 .084023 _cons | .6246566 .1147732 5.44 0.000 .3993031 .8500102
------------------------------------------------------------------------------
You are concerned that the coefficient of attend may be biased due to an omitted variable. You decide to run an Instrumental Variables (IV) regression. Your instrument for “attend” is the variable “distance”, which measures how far the students live from College.
The following is part of the output from your first-stage regression:
. reg attend distance
------------------------------------------------------------------------------ attend | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+----------------------------------------------------------------
distance | -.089651 .0029648 _cons | 1.566222 .4534568
------------------------------------------------------------------------------
Source | SS df MS Number of obs = 680
-------------+------------------------------ F( 1, 677) =
Model | 122.687884 1 96.3439422 Prob > F = 0.1027
Residual | 245.709652 677 .259541584 R-squared = 0.1230
-------------+------------------------------ Adj R-squared = 0.1216
Total | 368.397537 679 .542558964 Root MSE = .10945
------------------------------------------------------------------------------ termgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- attend_hat | .0463716 .0339639 _cons | -.3830615 .1121398
------------------------------------------------------------------------------
please use this google drive link to download the answer file.
https://drive.google.com/file/d/1dqmsndv77HLrqsB2kosjlWBtTfTJT0rx/view?usp=sharing
note: if you have any trouble in viewing/downloading the answer from the given link, please use this below guide to understand the whole process.
https://helpinhomework.org/blog/how-to-obtain-answer-through-google-drive-link