Fill This Form To Receive Instant Help

Help in Homework
trustpilot ratings
google ratings


Homework answers / question archive / if f(x) = e2xy then find fx, fy, fxx, fxy, fyx, fyy

if f(x) = e2xy then find fx, fy, fxx, fxy, fyx, fyy

Math

if f(x) = e2xy then find fx, fy, fxx, fxy, fyx, fyy .

 

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Given function is f( x ) = e2xy

we have to calculate fx, fy, fxx, fxy, fyx, fyy

these are first order and second order derivative with respects to x , y.

 

fx = ∂f / ∂x

= ∂( e2xy ) / ∂x ( differntaition of eax = a eax and if a is a function of x its differentaition with respect to x should be done.)

= e2xy * 2y

 

fy = ∂f / ∂y

= ∂( e2xy ) / ∂y

= e2xy * 2x

 

fxx = ∂2f / ∂2x

double differentiation of function with respect to x.

we know that fx = e2xy * 2y

so fxx = 2y * e2xy * 2y

fxx = 4y2 e2xy

 

 

fyy = ∂2f / ∂2y

double differentiation of function with respect to y.

we know that fy = e2xy * 2x

so fyy = 2x * e2xy * 2x

fyy = 4x2 e2xy

 

fxy = ∂2f / ∂x ∂y

differentaition of of fx with respect to y.

we know that fx = e2xy * 2y

so fxy = using product rule

e2xy 2 + 2y *e2xy * (2x)

2e2xy ( 1 + 2xy )

 

 

fyx = ∂2f / ∂y ∂x

differentiation of fy with respect to x

we know that fy = e2xy * 2x ( using product rule)

so fyx = e2xy (2) + 2x *e2xy * (2y)

fyx =  2e2xy ( 1 + 2xy )