Fill This Form To Receive Instant Help
Homework answers / question archive / Find dy / dx and d2y / dx2 and evaluate at the point : x = 2t +1 , y = t2 + t at t = 2
Find dy / dx and d2y / dx2 and evaluate at the point : x = 2t +1 , y = t2 + t at t = 2.
x = 2t + 1
y = t2 + t , t=2;
dy/dx = (dy/dt) / ( dx/dt)
dy/dt = 2t + 1 ( d(tn)/dt = ntn-1)
dx/dt = 2
dy/dx = (2t + 1) / 2
= (2 * 2 + 1) / 2 ( at t = 2)
= 5/2
d2y / dx2 = d(dy/dx) / dx
d2y / dx2 = d ((dy/dt) / ( dx / dt)) / dx
d2y / dx2 = [d ((dy/dt) / ( dx / dt)) / dt ] / (dx / dt)
= (d ((2t + 1) / 2)/dt ) / 2
= 1/2
dy/dx = 5/2
d2y / dx2 = 1/2