Fill This Form To Receive Instant Help
Homework answers / question archive / Question 1 of 40 Solve the following system of equations using matrices
Question 1 of 40 |
Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination.
|
x + y + z = 4 |
A. {(3, 1, 0)}
B. {(2, 1, 1)}
C. {(4, 2, 1)}
D. {(2, 1, 0)}
Question 2 of 40 |
Use Cramer’s Rule to solve the following system.
|
x + 2y + 2z = 5 |
A. {(33, -11, 4)}
B. {(13, 12, -3)}
C. {(23, -12, 3)}
D. {(13, -14, 3)}
Question 3 of 40 |
If AB = -BA, then A and B are said to be anticommutative.
Are A = |
|
0 |
-1 |
|
and B = |
|
1 |
0 |
|
Anticommutative? |
A. AB = -AB so they are not anticommutative.
B. AB = BA so they are anticommutative.
C. BA = -BA so they are not anticommutative.
D. AB = -BA so they are anticommutative.
Question 4 of 40 |
Use Cramer’s Rule to solve the following system.
|
2x = 3y + 2 |
A. {(8, 2)}
B. {(3, -4)}
C. {(2, 5)}
D. {(7, 4)}
Question 5 of 40 |
Use Cramer’s Rule to solve the following system.
|
12x + 3y = 15 |
A. {(2, -3)}
B. {(1, 3)}
C. {(3, -5)}
D. {(1, -7)}
Question 6 of 40 |
Use Cramer’s Rule to solve the following system.
|
4x - 5y - 6z = -1 |
A. {(2, -3, 4)}
B. {(5, -7, 4)}
C. {(3, -3, 3)}
D. {(1, -3, 5)}
Question 7 of 40 |
Find values for x, y, and z so that the following matrices are equal.
|
2x |
y + 7 |
|
= |
|
-10 |
13 |
|
A. x = -7; y = 6; z = 2
B. x = 5; y = -6; z = 2
C. x = -3; y = 4; z = 6
D. x = -5; y = 6; z = 6
Question 8 of 40 |
Use Cramer’s Rule to solve the following system.
|
x + y = 7 |
A. {(7, 2)}
B. {(8, -2)}
C. {(5, 2)}
D. {(9, 3)}
Question 9 of 40 |
Use Cramer’s Rule to solve the following system.
|
x + y + z = 0 |
A. {(-1, -3, 7)}
B. {(-6, -2, 4)}
C. {(-5, -2, 7)}
D. {(-4, -1, 7)}
Question 10 of 40 |
Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination.
|
x + 3y = 0 |
A. {(3, -1, -1)}
B. {(2, -3, -1)}
C. {(2, -2, -4)}
D. {(2, 0, -1)}
Question 11 of 40 |
Use Cramer’s Rule to solve the following system.
|
3x - 4y = 4 |
A. {(3, 1)}
B. {(4, 2)}
C. {(5, 1)}
D. {(2, 1)}
Question 12 of 40 |
Use Gaussian elimination to find the complete solution to each system.
|
x1 + 4x2 + 3x3 - 6x4 = 5 |
A. {(-47t + 4, 12t, 7t + 1, t)}
B. {(-37t + 2, 16t, -7t + 1, t)}
C. {(-35t + 3, 16t, -6t + 1, t)}
D. {(-27t + 2, 17t, -7t + 1, t)}
Question 13 of 40 |
Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists.
|
w - 2x - y - 3z = -9 |
A AND D ARE SAME ANSWERS
A. {(-1, 2, 1, 1)}
B. {(-2, 2, 0, 1)}
C. {(0, 1, 1, 3)}
D. {(-1, 2, 1, 1)}
Question 14 of 40 |
Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists.
|
3x + 4y + 2z = 3 |
A. {(-2, 1, 2)}
B. {(-3, 4, -2)}
C. {(5, -4, -2)}
D. {(-2, 0, -1)}
Question 15 of 40 |
Use Cramer’s Rule to solve the following system.
|
x + 2y = 3 |
A. {(3, 1/5)}
B. {(5, 1/3)}
C. {(1, 1/2)}
D. {(2, 1/2)}
Question 16 of 40 |
Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination.
|
2x - y - z = 4 |
A. {(2, -1, 1)}
B. {(-2, -3, 0)}
C. {(3, -1, 2)}
D. {(3, -1, 0)}
Question 17 of 40 |
Use Gaussian elimination to find the complete solution to each system.
|
x - 3y + z = 1 |
A. {(2t + 4, t + 1, t)}
B. {(2t + 5, t + 2, t)}
C. {(1t + 3, t + 2, t)}
D. {(3t + 3, t + 1, t)}
Question 18 of 40 |
Solve the system using the inverse that is given for the coefficient matrix.
|
2x + 6y + 6z = 8 |
The inverse of:
|
2 |
6 |
6 |
|
is
|
7/2 |
0 |
-3 |
|
A. {(1, 2, -1)}
B. {(2, 1, -1)}
C. {(1, 2, 0)}
D. {(1, 3, -1)}
Question 19 of 40 |
Give the order of the following matrix; if A = [aij], identify a32 and a23.
|
1 |
-5 |
∏ |
e |
|
A. 3 * 4; a32 = 1/45; a23 = 6 |
||||||||||||||
B. 3 * 4; a32 = 1/2; a23 = -6 |
||||||||||||||
C. 3 * 2; a32 = 1/3; a23 = -5 |
||||||||||||||
D. 2 * 3; a32 = 1/4; a23 = 4
Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists.
|
||||||||||||||
Question 21 of 40 |
||||||||||||||
Locate the foci of the ellipse of the following equation.
x2/16 + y2/4 = 1
A. Foci at (-2√3, 0) and (2√3, 0) |
|||
B. Foci at (5√3, 0) and (2√3, 0) |
|||
C. Foci at (-2√3, 0) and (5√3, 0) |
|||
D. Foci at (-7√2, 0) and (5√2, 0) |
|||
Question 22 of 40 |
|||
Find the vertices and locate the foci of each hyperbola with the given equation.
y2/4 - x2/1 = 1
A. Vertices at (0, 5) and (0, -5); foci at (0, 14) and (0, -14) |
|||||||||||||||||||||||
B. Vertices at (0, 6) and (0, -6); foci at (0, 13) and (0, -13) |
|||||||||||||||||||||||
C. Vertices at (0, 2) and (0, -2); foci at (0, √5) and (0, -√5) |
|||||||||||||||||||||||
D. Vertices at (0, 1) and (0, -1); foci at (0, 12) and (0, -12)
Locate the foci of the ellipse of the following equation.
|
|||||||||||||||||||||||
Question 25 of 40 |
|||||||||||||||||||||||
Find the standard form of the equation of the following ellipse satisfying the given conditions.
Foci: (-2, 0), (2, 0)
Y-intercepts: -3 and 3
A. x2/23 + y2/6 = 1 |
|||||||||||||||||||||
B. x2/24 + y2/2 = 1 |
|||||||||||||||||||||
C. x2/13 + y2/9 = 1 |
|||||||||||||||||||||
D. x2/28 + y2/19 = 1
Find the standard form of the equation of each hyperbola satisfying the given conditions.
|
|||||||||||||||||||||
Question 28 of 40 |
|||||||||||||||||||||
Find the solution set for each system by finding points of intersection.
|
x2 + y2 = 1 |
A. {(0, -2), (0, 4)} |
|||
B. {(0, -2), (0, 1)} |
|||
C. {(0, -3), (0, 1)} |
|||
D. {(0, -1), (0, 1)} |
|||
Question 29 of 40 |
|||
Convert each equation to standard form by completing the square on x or y. Then ?nd the vertex, focus, and directrix of the parabola.
x2 - 2x - 4y + 9 = 0
A. (x - 4)2 = 4(y - 2); vertex: (1, 4); focus: (1, 3) ; directrix: y = 1 |
|||
B. (x - 2)2 = 4(y - 3); vertex: (1, 2); focus: (1, 3) ; directrix: y = 3 |
|||
C. (x - 1)2 = 4(y - 2); vertex: (1, 2); focus: (1, 3) ; directrix: y = 1 |
|||
D. (x - 1)2 = 2(y - 2); vertex: (1, 3); focus: (1, 2) ; directrix: y = 5 |
|||
Question 30 of 40 |
|||
Locate the foci and find the equations of the asymptotes.
x2/9 - y2/25 = 1
A. Foci: ({±√36, 0) ;asymptotes: y = ±5/3x |
||
B. Foci: ({±√38, 0) ;asymptotes: y = ±5/3x |
||
C. Foci: ({±√34, 0) ;asymptotes: y = ±5/3x |
||
D. Foci: ({±√54, 0) ;asymptotes: y = ±6/3x |
||
Question 31 of 40 |
||
Find the focus and directrix of each parabola with the given equation.
y2 = 4x
A. Focus: (2, 0); directrix: x = -1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B. Focus: (3, 0); directrix: x = -1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C. Focus: (5, 0); directrix: x = -1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D. Focus: (1, 0); directrix: x = -1
Convert each equation to standard form by completing the square on x and y.
|
Already member? Sign In