Fill This Form To Receive Instant Help

Help in Homework
trustpilot ratings
google ratings


Homework answers / question archive / Integrate ∫ x8 (x9 - 10)5 dx   by change of variable

Integrate ∫ x8 (x9 - 10)5 dx   by change of variable

Math

Integrate ∫ x8 (x9 - 10)5 dx   by change of variable.

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

This question can be done by using change of variable method

integral is

∫ x8 (x9 - 10)5 dx

here, the best choice of variable is,

let

u = x9 - 10

 

du = 9 x8 dx

 

x8 dx = du/9 ( using substitution )

this integral can be written as : ∫ x8 (x9 - 10)5 dx = ∫ (( u )5 / 9 )du

(1/9) ∫ ( u )5 du

now we know that ∫ xn = xn+1 / n+1

= (1/9) * u6 / 6

=u6 / 54

= ( x9 - 10 )6 / 54

the answer of this indefinite integral will be ( x9 - 10 )6 / 54