Fill This Form To Receive Instant Help
Homework answers / question archive / Final Exam Study Guide 1
Final Exam Study Guide 1. Kinds of Intermolecular forces, and the factors affect IMFs (know your Polarity) Ö dispersion forces Ö dipole–dipole attractions Ö hydrogen bonds Ö ion–dipole attraction CH10 Example 10.3 CH10 Outcomes 2. Viscosity and Factors Affecting Viscosity CH10 Outcomes Q1 3. Surface tension and Factors Affecting Surface Tension CH10 Outcomes Q3 and Q4 4. Cohesive forces, Adhesive forces, Capillary action CH10 Outcomes Q5 5. Meniscus, Concave Convex CH10 Outcomes Q2 6. Vapor Pressure CH10 Example 10.5 CH10 Outcomes Q3 7. Volatile & Nonvolatile 8. Boiling Point & Normal Boiling Point CH10 Outcomes Q2 CH10 Outcomes Q4 9. Clausius- Clapeyron equation CH10 Example 10.7 CH10 Example 10.8 CH10 Outcomes Q7 10. Heat of Vaporization versus Condensation, Heat of Melting and Freezing, Heat of Sublimation and Deposition CH10 Outcomes Q1 CH10 Outcomes Q5 and Q6 11. Phase Diagrams • Triple point • Critical point • Supercritical fluid • 6 phase transitions • melting point/boiling point from the phase diagram CH10 Phase Diagrams of H2O (negative slope) CH10 Phase Diagrams of CO2 (positive slope) CH10 Outcomes Q1-Q3 12. Types of Crystalline Solids and Properties of Solids Ionic Solids Metallic Solids Covalent Network Solid Molecular Solid CH10 Table CH10 Outcomes Q1-Q4 13. Unit Cell (table from lecture)----memorize it!!!! CH10 Outcomes Q1-Q4 14. Calculation of density CH10 Example 10.15 CH10 Outcomes Q5-Q6 15. two types of holes 16. Bragg equation nλ = 2d sin θ CH10 Example 10.19 CH10 Outcomes Q7 17. Solution Formation, Solute, Solvent Effect of Intermolecular Forces CH11 Outcomes Q1 and Q2 18. Electrolytes • strong electrolyte • weak electrolyte • nonelectrolyte CH11 Outcomes Q1-Q4 19. Solubility: saturated/ unsaturated/ supersaturated CH11 Outcomes Q7 20. Solutions of Gases in Gases Solutions of Gases in Liquids Solutions of Liquids in Liquids Solutions of Solids in Liquids Factors affect solubility of the solutions CH11 Outcomes Q1-Q2 21. Henry’s Law Cgas = kHPgas CH11 Example CH11 Outcomes Q5-Q6 22. miscible & immiscible CH11 Outcomes Q3-Q4 23. Colligative Properties 1) Vapor Pressure Lowering a. nonvolatile + volatile CH11 Example 11.4 Psolvent in solution = χsolvent?P° b. volatile + volatile CH11 Outcomes Outcomes Q2 Ptotal = Psolute + Psolvent Psolute = χsolute·P°solute and Psolvent = χsolvent ·P°solvent CH11 Outcomes Outcomes Q3 2) Boiling-Point Elevation (BPsolution – BPsolvent) = ΔTb = m·Kb CH11 Slide 64 Example 11.5 CH11 Outcomes Outcomes Q4 and Q5 CH11 Outcomes Outcomes Q12 3) Freezing-Point Depression (FPsolvent – FPsolution) = ΔTf = m?Kf CH11 Example 11.7 CH11 Outcomes Q7 4) Osmotic Pressure Π = MRT CH11 Example 11.8 • a hypotonic solution; an isotonic solution; and a hypertonic solution. CH11 Outcomes Q13 • van’t Hoff factor, i. CH11 Example CH11 Outcomes Q9 CH11 Outcomes Q10 and Q11 24. Concentration Units (CH11 Table) The mole fraction (X) Molarity (M) Molality (m) ppm CH11 Example CH11 Outcomes Q6 CH11 Outcomes Q8 25. Colloids CH11 Outcomes Q1-Q3 26. Average Rate Instantaneous Rate Rate expression for reactions CH 12 Example 12.1 Example 12.2 CH 12 Q1-4 27. Rate Laws (Relationship between Rate and Concentration of Reactants) Zero order First order Second order Overall order CH 12 Example CH 12 Example 12.5 CH 12 12.3 Outcomes Q1-4, Q7-9 28. Unit of k (Rate constant) CH 12 12.3 Outcomes Q5, 6 29. Integrated Rate Laws (Relationship between Concentration and Time of Reaction) Zero order First order Second order CH 12 Example CH 12 Example 12.6 CH 12 Example 12.8 CH 12 12.4 Outcomes Q1-3, 5 30. Half life Zero order First order Second order CH 12 Example CH 12 12.4 Outcomes Q4 31. Arrhenius Equation (Effect of Temp on Reaction Rate) CH 12 Example CH 12 12.5 Outcomes Q1-5 32. Activation energy, Activated Complex 33. Intermediate CH 12 12.6 Outcomes Q1 34. Molecularity CH 12 12.6 Outcomes Q2, Q4 35. Mechanisms with a SLOW initial step (Rate Determining Step) Mechanisms with a FAST initial step CH 12 12.6 Outcomes Q3 36. Catalysts CH 12 12.7 Outcomes Q1-2 37. Dynamic Equilibrium Rateforward= Ratereversed CH 13 13.1 Outcomes Q1 Reaction Quotient (Q) Equilibrium Constant (K) Homogeneous Equilibria & Heterogeneous Equilibria 38. Relationship between Q and K, determine which direction that reaction proceeds CH 13 Example 13.1 CH 13 Example 13.2 CH 13 Example 13.3 CH 13 13.2 Outcomes Q2-Q5 39. Relationship between K and 1 CH 13 13.2 Outcomes Q1 40. Relationship between K and Chemical equations CH 13 Example CH 13 13.2 Outcomes Q6 and Q7 41. Relationship between Kc and Kp CH 13 Example 13.4 CH 13 13.2 Outcomes Q8 -Q10 42. Le Chatelier’s Principle Effect of Concentration Changes on Equilibrium Effect of Volume(Pressure) Changes on Equilibrium Effect of Temperature Change on Equilibrium Effect of Catalysts on Equilibrium CH 13 13.3 Outcomes Q1 -Q4 43. Equilibrium Calculations Situation 1-5 CH 13 Examples CH 13 Outcomes Q1 -Q5 44. Arrhenius Acids and Bases, Brønsted-Lowry Acids and Bases CH 14 Outcomes Q1 Q2 45. Amphoteric substances CH 14 Outcomes Q3 CH 14 Example 14.3 46. Conjugate acid-base pair CH 14 Outcomes Q4 47. Calculate [H3O+], [OH–] for pure water CH 14 Example 14.1 CH 14 Outcomes Q5 and Q6 48. Calculate pH, pOH, [H3O+], [OH–] CH 14 Example 14.4 CH 14 Example 14.5 CH 14 Example 14.6 CH 14 Outcomes Q1 to Q8 49. Ka, pKa, Kb, pKb, (Relative Strengths of Acids and Bases) CH 14 Outcomes Q5 50. Calculate pH of strong acid, pOH of strong base( pay attention to 2A strong base) CH 14 Example CH 14 Outcomes Q6 51. Calculate Ka, Kb CH 14 Example 14. 11 CH 14 Example 14. 12 CH 14 Example 14. 13 CH 14 Example 14. 14 CH 14 Outcomes Q1 Q2 CH 14 Outcomes Q4 CH 14 Outcomes Q7 52. Percent Ionization CH 14 Outcomes Q3 CH 14 Example 14.7 53. Strength of Binary Acids, Strength of Oxyacids CH 14 Outcomes Q8 CH 14 Outcomes Q9 54. Predict salt solution: acidic, basic, neutral CH 14 Outcomes Q1 Q2 Q3 55. pH of a salt solution CH 14 Example 14.15 CH 14 Outcomes Q4 Q5 56. pH of a strong diprotic acid 57. Buffer (know which one is a good buffer) CH 14 Outcomes Q1 Q2 Q3 58. How to pick a acid to make certain pH buffer CH 14 Outcomes Q4 59. Calculate pH of a buffer Henderson-Hasselbalch equation CH 14 Outcomes Q5 Q6 60. Calculate pH of a buffer with added acid or base CH 14 Outcomes Q7 61. Titration • strong acid strong base • weak acid strong base CH 14 Example • strong acid weak base CH 14 Outcomes Q1-Q6 62. Calculate pH of weak acid strong base (initial, before equivalence point, at equivalence point, after equivalence point) CH 14 Example 63. Solubility Product (Ksp) CH 15 Example 15.1 CH 15 Example 15.2 64. Molar solubility CH 15 Example CH 15 Example 15.3 CH 15 Example CH 15 Outcomes Q1 CH 15 Outcomes Q6 65. Precipitation (Q and Ksp) CH 15 Example 15.7 CH 15 Outcomes Q3 CH 15 Outcomes Q4 Q5 66. Common Ion Effect CH 15 Example 15.12 CH 15 Outcomes Q2 67. Lewis Acids and Bases CH 15 Outcomes Q1 Q2 68. Spontaneous and Nonspontaneous, irreversible and reversible CH 16 Q1-3 69. Entropy Some changes that increase the entropy CH 16 Example 16.3 CH 16 Outcomes Q1-4 70. Second Law of Thermodynamics: CH 16 Example 16.4 71. Third Law of Thermodynamics: ° 72. Standard Entropy change for a reaction??!"# ?Sºreaction = (∑npSºproducts) - (∑nrSºreactants) CH 16 Example 16.6 CH 16 Outcomes Q1-7 73. Gibbs Free Energy, ?G 74. Three ways to calculate ??°!"# • Calculate Free Energy Changes with ??°!"# = ??°!"# − ???°!"# CH 16 Example • Calculate ??°!"# with Tabulated Values of Free Energies Formation ?Goreaction = ∑nGof(products) - ∑nGof(reactants) CH 16 Example • Determining ??°!"# for a Stepwise Reaction from the Changes in Free Energy for Each of the Steps CH 16 Example 75. ??°!"# = ??°!"# − ???°!"# 76. ?G under Nonstandard Conditions DG = DG° + RTlnQ. Free Energy and Equilibrium ?Gº and K DG° = −RTlnK CH 16 Example CH 16 Outcomes Q1-11 77. Voltaic Cell (Galvanic Cell), Cell notation Anode, Cathode, Salt Bridge CH 17 Example 17.3 CH 17 Outcomes Q1-4 78. Cell Potential, standard cell potential E°cell CH 17 Example 17.4 79. Predicting Spontaneity Direction of Redox Reactions CH 17 Outcomes Q1-5 80. E°cell, DG°, and K CH 17 Example 17.5 81. Nernst Equation CH 17 Example 17.6 82. Concentration Cell CH 17 Example 17.7 CH 17 Outcomes Q1-6 83. Electrolytic cells CH 17 Example 17.8 CH 17 Outcomes Q1-2 1. What type(s) of intermolecular forces exist between Cl2 and CCl4? A) dispersion forces and ion-dipole T T B) dispersion forces and dipole-dipole Bothnonpolar C) dispersion forces D) dispersion forces, ion-dipole, and dipole-dipole E) None. Since both are gases at room temperature, they do not interact with each other. 2. Of the following substances, ________ has the highest boiling point. A) HOCH2CH2CH2OH H B) CH3CH2OH strongest C) C4H10 two 04 groups D) N2 strongest E) Cl2 2mF 2mF L S G 3. The phase diagram of a substance is given above. This substance is a ________ at 30 °C and 0.5 atm. A) liquid B) gas C) solid D) supercritical fluid E) crystal 4. Determine the vapor pressure (in torr) of a substance at 36°C, whose normal boiling point is 84°C and has a ΔHvap of 22.1 kJ/mol. Hooton A) 239 torr B) 31.8 torr C) 41.8 torr D) 147 torr E) 98 torr ap In R Ct CITaz In th InEton Pz Hopton 2658.17 0.003236 2658.17 X 0000435 73 0002kt 1.156 e 56 239 3,178 7 13 107 I d F fans g 5. Vanadium crystallizes in a body centered cubic structure and has an atomic radius of 131 pm. Determine the density of vanadium, if the edge length of a bcc structure is 4r/ . mass Vanadium A) 3.06 g/cm3 wait cell Atoms BCC 2 per Atoms B) 12.2 g/cm3 ffTzX13lPm C) 6.11 g/cm3 50 fmltof 3 302.9Pm.zzmzhf D) 2.77 g/cm3 2 10 E) 8.46 g/cm3 V 13 x 2Atom 10putX T 1302 of t.gr 4xi31pm l3 9pm x.IT 78 278 6. Calculate the freezing point of a solution of 500.0 g of ethylene glycol (C2H6O2) dissolved in 500.0 g of water. Kf = 1.86°C/m and Kb = 0.512°C/m. E I Cg 12 2 11 61162 A) 30.0°C B) -30.0°C C) 8.32°C 50QogX dute 1613 m D) -8.32°C soluent kg E) 70.2°C 1000g 1.69 022g 62841 otf ikf m.no kgof 0.00 30.021 30 16.13 me 30.0 7 1.8604mi Tf off Which one of the following substances is more likely to dissolve in benzene (C H )? 7. A) CH3CH2OH B) NH3 C) NaCl D) CCl4 E) HBr Tikedissolves 6 6 like samepolarity nonpolar 0 nonpolar lookingfor nonpolar 8. Calculate the molality of a solution that is prepared by mixing 25.5 mL of CH3OH (d = 0.792 g/mL) and 387 mL of CH3CH2CH2OH (d = 0.811 g/mL). H255mlxo.FI massosluofeftb A) 0.630 m 6 20.1968 20.196 md 328 B) 0.812 m C) 1.57 m massofutzatzatrott_387mW kg solvent 313.85784 0.81181mL D) 2.01 m solvent E) 4.98 m a313857kg 9. Place the following solutions in order of increasing osmotic pressure. of 1 I. 0.15 M C2H6O2 A) III < I < II B) II < III < I C) I < II < III D) II < I < III E) I < III < II m m htI Enrol 313.85 1 3 2 II. 0.15i M BaCl 7 i 2 III. 0.15 M NaI IfRyIsamefradthe options same for alltheoptions 10. Determine the solubility of N2 in water exposed to air at 25°C if the atmospheric pressure is 2.0 atm. Assume that the mole fraction of nitrogen is 0.78 in air and the Henry's law constant for nitrogen in water at this temperature is 6.1 × 10-4 M/atm. A) 1.6 × 10-4 M Cgas KHPN PN ptoealxXN B) 6.4 × 10-4 M C) 9.5 × 10-4 M 2 D) 1.1 × 10-4 M aim E) 1.2 × 10-4 M oatmxo.IS if E 11. Write a balanced reaction for which the following rate relationships are true. products coefficients Rate = = = Reactant T A) 2 N2O5 → 4 NO2 + O2 B) 4 NO2 + O2 → 2 N2O5 C) 2 N2O5 → NO2 + 4 O2 D) NO2 + O2 → E) N2O5 → N2O5 NO2 + O2 12. Determine the rate law and the value of k for the following reaction using the data provided. Egghead CO(g) + Cl2(g) → COCl2(g) Rate KEADMEAD a KECOTICIDE A) Rate = 11 M-3/2s-1 [CO][Cl2]3/2 B) Rate = 36 M-1.8s-1 [CO][Cl2]2.8 C) Rate = 17 M-2s-1 [CO][Cl2]2 D) Rate = 4.4 M-1/2s-1 [CO][Cl2]1/2 E) Rate = 18 M-3/2s-1 [CO]2[Cl2]1/2 useAny Expt to determine k use ExptD 0.696 Mst k K 025 11 1040532 YM ME ktI M [CO]i (M) 0.25 0.25 0.50 Todetermine m RateofzO -1s-1) Initial Rate (Ma 0.696 1.97 3.94 [Cl2]i (M) 0.40 0.80 0.80 use 830 K cozmEUI Rateofj IM 30 E 3.94 10.80 Todetermine n use E Esm 1m71 Rated ETCDinteld Rateof 1 0 25 02696 n I.gg To 0353 45 7 28,3g nn a Fh 13. Carbon-14 has a half-life of 5720 years and this is a first order reaction. If a piece of wood has converted 75% of the carbon-14, then how old is it? A) 11440 years 1.386 Question order k B) 2375 years s C) 4750 years WEAL TAJ D) 4290 years E) 1430 years good 1st tyz Ktt LnEtta IteH440yrs T In Kt 1245 14. The first-order decomposition of N2O at 1000 K has a rate constant of 0.76 s-1. If the initial concentration of N2O is 10.9 M, what is the concentration of N2O after 9.6 s? A) 7.4 × 10-3 M o 1 B) 1.0 × 10-3 M C) 1.4 × 10-3 M s X -3 D) 3.6 × 10 M 7.296 t 2.389 E) 8.7 × 10-3 M IntAT InIAJ LnIAI olds 9.6 Kt In 409 InIA EAT474 10 4.907 LaLA 15. A reaction is followed and found to have a rate constant of 3.36 × 104 M-1s-1 at 344 K and a 374 rate constant of 7.69 M-1s-1 at 219 K. Determine the activation energy for this reaction. A) 23.8 kJ/mol B) 42.0 kJ/mol C) 11.5 kJ/mol D) 12.5 kJ/mol E) 58.2 kJ/mol Ea 10.00291 0.00457 104 Ln2289 16. Given the following proposed mechanism, predict the1rate law for the overall reaction. In EEI'T Tz I T.ITmoiT 13 th 4 mTT 857 A2 + 2B → 2AB (overall reaction) Mechanism A2 ? 2A A + B → AB A) Rate = k[A][B] B) Rate = k[A2][B] C) Rate = k[A2][B]1/2 D) Rate = k[A2] E) Rate = k [A2]1/2[B] fast slow Rateforward KEAD Ratereverse KITAI III IEEE Kzf KzEAT43 Overall Rate Rate IAI LB KIAT k EB 17. The Keq for the equilibrium below is 7.52 × 10-2 at 480.0 °C. 2Cl2 (g) + 2H2O (g) D 4HCl (g) + O2 (g) What is the value of Keq at this temperature for the following reaction? 2HCl (g) + O2 (g) A) 13.3 B) 3.65 C) -0.0376 D) 5.66 × 10-3 E) 0.274 Cl2 (g) + H2O (g) u Reversed 7 4Hulg 102cg 22012cg 1240cg kef y.sn Equation dividedby 2 13.30 2HUYHIO2cg7ECklg1tttNYIkq fTzzozIzg 18. Which reaction will shift to the left in response to a decrease in volume? 2 i A) 2HI (g) H2 (g) + I2 (g) B) H2 (g) + Cl2 (g) 2 HCl (g) C) N2 (g) + 3H2 (g) 2 NH3 (g) D) 2 SO3 (g) 2 SO2 (g) + O2 (g) E) 4 Fe (s) + 3 O2 (g) 2 Fe2O3 (s) Vb shiftto lessmoles 19. Given the following reaction at equilibrium at 450.0 °C: CaCO3 (s) CaO (s) + CO2 (g) If pCO2 = 0.0155 atm, Kc = ________. A) 155 B) 0.0821 C) 0.920 D) 2.61 × 10-4 E) 9.20 20. Consider the following reaction: kp Pcoz 0.0155 Kp kcCRTfn Kc RT 0,0155 1610.08206 116 2.61 45012733 10 CH4(g) + 2 H2S(g) ? CS2(g) + 4 H2(g) 9 A reaction mixture initially contains 0.50 M CH4 and 0.75 M H2S. If the equilibrium concentration of H2 is 0.44 M, find the equilibrium constant (Kc) for the reaction. A) 0.23 12425191 CSzcg B) 0.038 O O I 0.50M 075M C) 2.9 N D) 10. 14N C 2x X E) 0.34 42 0 14 Half 149 E 0,50 N 039M Kee N QUM 0.752X 0,53M 0,11 0.4424 cttoflthsj.co 44M A AHN Q038T q q 21. Consider the following reaction and its equilibrium constant: 4 CuO(s) + CH4(g) ? CO2(g) + 4 Cu(s) + 2 H2O(g) 0.67M Kc = 1.10 1.3M A reaction mixture0.22M contains 0.22 M CH4, 0.67 M CO2 and 1.3 M H2O. Which of the following statements is TRUE concerning this system? IHzQ2 A) The reaction will shift in the direction of products. B) The equilibrium constant will increase. C) The reaction quotient will increase. Qc D) The reaction will shift in the direction of reactants. 1.322 Qb E) The system is at equilibrium. Qe Latos 5.15 c 22. Which one of the following is the weakest acid? A) HF (Ka = 6.8 × 10-4) 4 B) HClO (Ka = 3.0 × 10-8) smallest -4 C) HNO2 (Ka = 4.5 × 10 ) D) HCN (Ka = 4.9 × 10-10) E) Acetic acid (Ka = 1.8 × 10-5) Kc ka 23. What is the pH of an aqueous solution at 25.0 °C that contains 1.35 × 10-8 M hydroxide ion? A) 7.87 B) 8.00 TOH 1.35 10 C) 6.13 l4 POH D) 1.35 35xD8 logo tog2OHT E) 7.00 16731 pH 7 14 7,87 p0H 24. Which of the following salts will produce an acidic solution? A) Sr(ClO4)2 Is B) KBr weakbase C) NH4I D) K2CO3 E) NaNO3 strongAcid 25. Which solution has the greatest buffering capacity? A) 0.335 M NH3 and 0.100 M NH4Cl B) 0.085 M NH3 and 0.090 M NH4Cl C) 0.540 M NH3 and 0.550 M NH4Cl D) 0.200 M NH3 and 0.565 M NH4Cl E) They are all buffer solutions and would all have the same capacity. 8M 7.87 26. Which one of the following is amphoteric? A) H2SO4 B) H2O2 C) CO2 D) H2O E) NaOH to Acid Base base font 27. The pH of a solution prepared by mixing 50.0 mL of 0.125 M KOH and 50.0 mL of 0.125 M HCl is ________. MOB 104 50.0mLXQl25M 6.25 103mot A) 6.29 strongAcid B) 7.00 625 03mot HCl 50.0mL C) 8.11 D) 5.78 strongAcid 1 Equivalence Point E) 0.00 of mills At Xal25M of f.pt storybase 28. The solubility of lead (II) chloride (PbCl2) is What is the Ksp of PbCl2? A) 5.0 × 10-4 PbCkls Pb2 B) 4.1 × 10-6 captzctcag ksp C) 3.1 × 10-7 LPbZJLU 1.6 522121.61072 D) 1.6 × 10-5 212512 11.6 E) 1.6 × 10-2 8 J 453 29. What is the pH of a solution that contains 0.800 M weak acid ( = 1.76 × of its conjugate base? Buffer A) 8.578 105 1 log B) 5.422 log C) 8.370 D) 4.087 4.754 0.668 E) 9.913 30. What is the solubility (in M) of PbCl2 in a Pbcbcs I Ksp Epb ) and 0.172 M 176 ptkpkatlog A) 2.0 × 10-3 B) 1.1 × 10-4 C) 1.8 × 10-4 D) 7.1 × 10-4 E) 1.6 × 10-5 051 14.08 77 solution of HCl? The K sp of PbCl2 is Pb Cag 0 S S Ect 1 201 Loy 0.15 as 0,15125 Scout12517 SCAIFE1.6 05 small approximation S T 1 thot q Lonization formic acid. The of formic acid is 1.77 × . A) 2.74 × HCO2H6y t thou B) 0.0180 I Quam C) 3.44 C D) 0.581 X E) 8.44 E X 0,152 7 4344 xcoo Itai 31. Calculate the percent ionization of formic acid ( H) in a solution that is 0.152 M in F Cortical 1113064 O O in g a N N 32. In the gas phase reaction below, NH3 is acting as a(n) ________. 0 NN ka o.is A 5,19 10 1130 electronic structure A) Br∅nsted-Lowry acid electrondonorg B) Br∅nsted-Lowry base C) Lewis base D) Lewis acid E) Arrhenius acid 33. The pH of a 0.15 M aqueous solution of NaBrO (the sodium salt of HBrO) is 10.7. What is the Ka for HBrO? salt 7 basicSohn cop 7 41303 10 A) 8.9 × 10-4 BroIag 1 thrill HBNaqt OHCaf 2.020 B) 1.6 × 10-6 I 0.00 LOH 6 0.00 Ql5M C) 1.3 × 10-12 IHso'T TN C Cg TN D) 3.3 × 10-8 N 2.0 10 1 N E 0,15 n se E) 6.0 × 10-9 pH 1 34. ΔS is positive for the reaction ________. A) CaO (s) + CO2 (g) → CaCO3 (s) B) N2 (g) + 3H2 (g) → 2NH3 (g) C) 2SO3 (g) → 2SO2 (g) + O2 (g) D) Ag+ (aq) + Cl- (aq) → AgCl (s) E) H2O (l) → H2O (s) kb ka b o.itn C5oYfE l67xio oHf 763 IT mol Ye ifo KoxEI f 35. Given the following table of thermodynamic data, 4lkJ 080 354.9 221.9 complete the following sentence. The vaporization of Ti is ________. A) spontaneous at all temperatures B) spontaneous at low temperature and nonspontaneous at high temperature g OG otto 705 l 8o4c2kJ mo1 OH t os o t 1334k I C) nonspontaneous at low temperature and spontaneous at high temperature D) nonspontaneous at all temperatures E) not enough information given to draw a conclusion 36. Which one of the following statements is true about the equilibrium constant for a reaction if ΔG° for the reaction is negative? A) K = 0 B) K = 1 spontaneous C) K > 1 o o o D) K < 1 E) More information is needed. TY Goa Eau 37. At what temperature will a reaction be spontaneous? ΔH = +22.2 kJ/mol and ΔS = +81.1 J/Kmol and assume both do not vary with temperature. A) at T > 298 K so spontaneous OH B) at T < 274 K C) at T < 298 K 222KYmol O 181 IT k D) at T > 274 K E) at all temperatures OG Tos T 38. Calculate the ΔG°rxn using the following information. 177274 2 H2S(g) + 3 O2(g) → 2 SO2(g) + 2 H2O(g) ΔH°f (kJ/mol) -20.6 -296.8 -241.8 S°(J/mol·K) 205.8 205.2 248.2 188.8 xnEt A) -990.3 kJ B) +108.2 kJ C) -466.1 kJ D) +676.2 kJ E) -147.1 kJ zo.ba montx3mYoog zu8kpmoiD kmdxc loTh2kJt4l2kJ Oskar 1036KJ Enposopodness Znrosteaetants L2moixi2os symo 22molxizxs.es moi.n 2molxiss.symouI 3molxczos.rs 496.4 377.6 1 1411.6 39. Use Hess's law to calculate ΔG°rxn using the following information. ClO(g) + O3(g) → Cl(g) + 2 O2(g) ΔG°rxn = ? 2 O3(g)→ 3 O2(g) Cl(g) + O3(g) → ClO(g) + O2(g) A) -472.4 kJ B) -210.3 kJ C) +455.1 kJ D) +262.1 kJ E) +524.1 kJ 8 990.3 aiiiiiisi.is L2moixfek9k4mzDmolxc 153.24k u 990.3147 ΔG°rxn = ? mo D 161 7 i ΔG°rxn = +489.6 kJ ΔG°rxn = -34.5 kJ Reverse Equation 8G9xn 345k 9cg t 03cg CIO it 02cg D t z 302cgIt a Cgi103T 203 1 Clog it 0 81 202cg 1 ClLf I 1 03cg Clog oG9xn 489.6KJ 1345kt 524 I 40. Calculate ΔGrxn at 298 K under the conditions shown below for the following reaction. 3 O2(g) → 2 O3(g) ΔG° = +326 kJ oG oG tRTlnQ P(O2) = 0.41 atm, P(O3) = 5.2 atm A) +341 kJ B) +17.8 kJ C) +332 kJ D) -47.4 kJ E) -109 kJ 2 Q 1326kt t EP 4113 z 8h31m41sx29SkLn39 326KJ 114.796 KJ 392.3 1341kt 41. Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K. 2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l) ΔG°f (kJ/mol) -110.9 87.6 51.3 -237.1 A) 8.71 × 108 B) 0.980 C) 1.15 × 10-9 D) 1.02 E) 5.11 × 10-4 OGE RTHK K=? 0Gt EnpGtcproducts Enraifereactan mo1J L2molXl llQ9kT mr 13m01X5h3KHmoltlmolxc237 lk 832 t 134.2 fl t Imolxc876 kTmo KJ 42. Determine the equilibrium constant for the following reaction at 498 K. 2 Hg(g) + O2(g) → 2 HgO(s) ΔH° = -304.2 kJ; ΔS° = -414.2 J/K oGorxn RT A) 1.87 × 1010 link B) 8.10 × 1031 0G9xn ott Tos 304.2KJ 498Kx 14142 C) 2.31 × 10-22 304.2kt 206.3kg D) 5.34 × 10-11 E) 4.33 × 1021 97.9KJ oGorxn 97.9KJ Luk RTlink 8.314 498k th 23.65 2365 K e h87x 43. Which transformation below is an example of an oxidation in an electrochemical cell? A) CO2 → C2O42B) VO2+ → VO2+ cincreases 2 → 15 Oxidation number C) NO NO3D) H2AsO4 → H3AsO3 E) O2 → H2O2 te P I 44. What is the coefficient of the dichromate ion when the following equation is balanced? Fe2+ + Cr2O72- → Cs Fe3+ + Cr3+ (acidic solution) ch 9 A) 1 B) 2 C) 3 D) 5 E) 6 I y µ is All choices Osco Table 20.2 45. The standard cell potential (E°cell) for the voltaic cell based on the reaction below is ________ V. Sn2+ (aq) + 2Fe3+ (aq) → 2Fe2+ (aq) + Sn4+ (aq) Rft A) +0.46 B) +0.617 C) +1.39 D) -0.46 E) +1.21 oxidation half Ren Eocene Ecathod Anode a6 0,771 0.154 46. The standard cell potential (E°cell) of the reaction below is -0.55 V. The value of reaction is ________ J/mol. I2 (s) + 2Br- (aq) → 2I- (aq) + Br2 (l) A) 0.54 B) 0.55 C) 5.5 × 10-6 D) 1.1 × 105 E) none of the above OGE n't Ecell 2molx 96,4851 x C ABV mule t 106133.531mm 11.1 105 77 for the 47. The standard cell potential ( ) for the reaction below is +1.10 V. The cell potential for this reaction is ________ V when the concentration of and Zn (s) + (aq) → Cu (s) + (aq) A) 1.42 B) 1.26 C) 0.94 D) 0.78 E) 1.10 2V logQ Eau Eau 92 log l lov l lov O162V fQ9DlV 48. How many grams of Ca metal are produced by the electrolysis of molten Ca current of 30.0 amp for 8.0 hours? A) 17.9 B) 359 A C) 0.0622 96485 C mole D) 179 E) 89.7 mole using a 8.95mole 8.95 Efa x 41798J 49. Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. O OX Pb2+(aq) + Cu(s) → Pb(s) + Cu2+(aq) Pb2+(aq) + 2 e? → Pb(s) Cu2+(aq) + 2 e? → Cu(s) A) 7.9 × 10-8 B) 8.9 × 107 C) 7.9 × 1015 D) 1.3 × 10-16 E) 1.1 × 10-8 Reduction E° = -0.13 V E° = +0.34 V EEeek 0 t.K Eceek Ecathod EAnode 034V Ql3V 92 logk 047 V I z l 3xio 50. Which substance is the oxidizing agent in the following reaction? Fe2S3 + 12HNO3 → 2Fe(NO3)3 + 3S + 6NO2 + 6H2O A) HNO3 B) S C) NO2 D) Fe2S3 E) H2O 5 o.n.tlhalf Reduction Rin Oxidation number decrease b Snest2AgIq SnFq 2AgLsi 51. Calculate the cell potential for the following reaction that takes place in an electrochemical cell at 25°C. cathode Anode EEeei A) -0.94 V B) -0.85 V C) +1.02 V D) +0.98 V E) +0.86 V Eceu 0 92 l i8oV ftp.etft me Q94V Ql4 En921ogQEcal Sn(s) ? Sn2+(aq, 1.8 M) ?? Ag+(aq, 0.055 M) ? Ag(s) log 55 Q94V 10.8671277 0,082 52. Calculate the cell potential for the following reaction that takes place in an electrochemical f cell at 25°C. Fe(s) ? Fe3+(aq, 0.0011 M) ?? Fe3+(aq, 2.33 M) ? Fe(s) A) +0.066 V B) -0.036 V C) 0.00 V D) -0.099 V E) +0.20 V Eceu Eau O 0 92 log Q 92 log 233 10.06671 eBook 0Hsys 40.66 kJ mol T ossys 0Gsys OHsys 40.66 kJmo 25 273 Kx 109.04mi Kx 40.66 kJmo 32.48 KJ 0Gsys t oGsys condensation 8.18 Kym TOS univ moi univ 25 273 K 27.4 1m01 of 000J vaporization 8.18 kgno oGsys DS off 109.0 Fma K K steam DSuniv 27.4 KY thot K 274 k X Ibrox 1 Final Exam Study Guide 1. Kinds of Intermolecular forces, and the factors affect IMFs (know your Polarity) Ö dispersion forces Ö dipole–dipole attractions Ö hydrogen bonds Ö ion–dipole attraction CH10 Example 10.3 CH10 Outcomes 2. Viscosity and Factors Affecting Viscosity CH10 Outcomes Q1 3. Surface tension and Factors Affecting Surface Tension CH10 Outcomes Q3 and Q4 4. Cohesive forces, Adhesive forces, Capillary action CH10 Outcomes Q5 5. Meniscus, Concave Convex CH10 Outcomes Q2 6. Vapor Pressure CH10 Example 10.5 CH10 Outcomes Q3 7. Volatile & Nonvolatile 8. Boiling Point & Normal Boiling Point CH10 Outcomes Q2 CH10 Outcomes Q4 9. Clausius- Clapeyron equation CH10 Example 10.7 CH10 Example 10.8 CH10 Outcomes Q7 10. Heat of Vaporization versus Condensation, Heat of Melting and Freezing, Heat of Sublimation and Deposition CH10 Outcomes Q1 CH10 Outcomes Q5 and Q6 11. Phase Diagrams • Triple point • Critical point • Supercritical fluid • 6 phase transitions • melting point/boiling point from the phase diagram CH10 Phase Diagrams of H2O (negative slope) CH10 Phase Diagrams of CO2 (positive slope) CH10 Outcomes Q1-Q3 12. Types of Crystalline Solids and Properties of Solids Ionic Solids Metallic Solids Covalent Network Solid Molecular Solid CH10 Table CH10 Outcomes Q1-Q4 13. Unit Cell (table from lecture)----memorize it!!!! CH10 Outcomes Q1-Q4 14. Calculation of density CH10 Example 10.15 CH10 Outcomes Q5-Q6 15. two types of holes 16. Bragg equation nλ = 2d sin θ CH10 Example 10.19 CH10 Outcomes Q7 17. Solution Formation, Solute, Solvent Effect of Intermolecular Forces CH11 Outcomes Q1 and Q2 18. Electrolytes • strong electrolyte • weak electrolyte • nonelectrolyte CH11 Outcomes Q1-Q4 19. Solubility: saturated/ unsaturated/ supersaturated CH11 Outcomes Q7 20. Solutions of Gases in Gases Solutions of Gases in Liquids Solutions of Liquids in Liquids Solutions of Solids in Liquids Factors affect solubility of the solutions CH11 Outcomes Q1-Q2 21. Henry’s Law Cgas = kHPgas CH11 Example CH11 Outcomes Q5-Q6 22. miscible & immiscible CH11 Outcomes Q3-Q4 23. Colligative Properties 1) Vapor Pressure Lowering a. nonvolatile + volatile CH11 Example 11.4 Psolvent in solution = χsolvent?P° b. volatile + volatile CH11 Outcomes Outcomes Q2 Ptotal = Psolute + Psolvent Psolute = χsolute·P°solute and Psolvent = χsolvent ·P°solvent CH11 Outcomes Outcomes Q3 2) Boiling-Point Elevation (BPsolution – BPsolvent) = ΔTb = m·Kb CH11 Slide 64 Example 11.5 CH11 Outcomes Outcomes Q4 and Q5 CH11 Outcomes Outcomes Q12 3) Freezing-Point Depression (FPsolvent – FPsolution) = ΔTf = m?Kf CH11 Example 11.7 CH11 Outcomes Q7 4) Osmotic Pressure Π = MRT CH11 Example 11.8 • a hypotonic solution; an isotonic solution; and a hypertonic solution. CH11 Outcomes Q13 • van’t Hoff factor, i. CH11 Example CH11 Outcomes Q9 CH11 Outcomes Q10 and Q11 24. Concentration Units (CH11 Table) The mole fraction (X) Molarity (M) Molality (m) ppm CH11 Example CH11 Outcomes Q6 CH11 Outcomes Q8 25. Colloids CH11 Outcomes Q1-Q3 26. Average Rate Instantaneous Rate Rate expression for reactions CH 12 Example 12.1 Example 12.2 CH 12 Q1-4 27. Rate Laws (Relationship between Rate and Concentration of Reactants) Zero order First order Second order Overall order CH 12 Example CH 12 Example 12.5 CH 12 12.3 Outcomes Q1-4, Q7-9 28. Unit of k (Rate constant) CH 12 12.3 Outcomes Q5, 6 29. Integrated Rate Laws (Relationship between Concentration and Time of Reaction) Zero order First order Second order CH 12 Example CH 12 Example 12.6 CH 12 Example 12.8 CH 12 12.4 Outcomes Q1-3, 5 30. Half life Zero order First order Second order CH 12 Example CH 12 12.4 Outcomes Q4 31. Arrhenius Equation (Effect of Temp on Reaction Rate) CH 12 Example CH 12 12.5 Outcomes Q1-5 32. Activation energy, Activated Complex 33. Intermediate CH 12 12.6 Outcomes Q1 34. Molecularity CH 12 12.6 Outcomes Q2, Q4 35. Mechanisms with a SLOW initial step (Rate Determining Step) Mechanisms with a FAST initial step CH 12 12.6 Outcomes Q3 36. Catalysts CH 12 12.7 Outcomes Q1-2 37. Dynamic Equilibrium Rateforward= Ratereversed CH 13 13.1 Outcomes Q1 Reaction Quotient (Q) Equilibrium Constant (K) Homogeneous Equilibria & Heterogeneous Equilibria 38. Relationship between Q and K, determine which direction that reaction proceeds CH 13 Example 13.1 CH 13 Example 13.2 CH 13 Example 13.3 CH 13 13.2 Outcomes Q2-Q5 39. Relationship between K and 1 CH 13 13.2 Outcomes Q1 40. Relationship between K and Chemical equations CH 13 Example CH 13 13.2 Outcomes Q6 and Q7 41. Relationship between Kc and Kp CH 13 Example 13.4 CH 13 13.2 Outcomes Q8 -Q10 42. Le Chatelier’s Principle Effect of Concentration Changes on Equilibrium Effect of Volume(Pressure) Changes on Equilibrium Effect of Temperature Change on Equilibrium Effect of Catalysts on Equilibrium CH 13 13.3 Outcomes Q1 -Q4 43. Equilibrium Calculations Situation 1-5 CH 13 Examples CH 13 Outcomes Q1 -Q5 44. Arrhenius Acids and Bases, Brønsted-Lowry Acids and Bases CH 14 Outcomes Q1 Q2 45. Amphoteric substances CH 14 Outcomes Q3 CH 14 Example 14.3 46. Conjugate acid-base pair CH 14 Outcomes Q4 47. Calculate [H3O+], [OH–] for pure water CH 14 Example 14.1 CH 14 Outcomes Q5 and Q6 48. Calculate pH, pOH, [H3O+], [OH–] CH 14 Example 14.4 CH 14 Example 14.5 CH 14 Example 14.6 CH 14 Outcomes Q1 to Q8 49. Ka, pKa, Kb, pKb, (Relative Strengths of Acids and Bases) CH 14 Outcomes Q5 50. Calculate pH of strong acid, pOH of strong base( pay attention to 2A strong base) CH 14 Example CH 14 Outcomes Q6 51. Calculate Ka, Kb CH 14 Example 14. 11 CH 14 Example 14. 12 CH 14 Example 14. 13 CH 14 Example 14. 14 CH 14 Outcomes Q1 Q2 CH 14 Outcomes Q4 CH 14 Outcomes Q7 52. Percent Ionization CH 14 Outcomes Q3 CH 14 Example 14.7 53. Strength of Binary Acids, Strength of Oxyacids CH 14 Outcomes Q8 CH 14 Outcomes Q9 54. Predict salt solution: acidic, basic, neutral CH 14 Outcomes Q1 Q2 Q3 55. pH of a salt solution CH 14 Example 14.15 CH 14 Outcomes Q4 Q5 56. pH of a strong diprotic acid 57. Buffer (know which one is a good buffer) CH 14 Outcomes Q1 Q2 Q3 58. How to pick a acid to make certain pH buffer CH 14 Outcomes Q4 59. Calculate pH of a buffer Henderson-Hasselbalch equation CH 14 Outcomes Q5 Q6 60. Calculate pH of a buffer with added acid or base CH 14 Outcomes Q7 61. Titration • strong acid strong base • weak acid strong base CH 14 Example • strong acid weak base CH 14 Outcomes Q1-Q6 62. Calculate pH of weak acid strong base (initial, before equivalence point, at equivalence point, after equivalence point) CH 14 Example 63. Solubility Product (Ksp) CH 15 Example 15.1 CH 15 Example 15.2 64. Molar solubility CH 15 Example CH 15 Example 15.3 CH 15 Example CH 15 Outcomes Q1 CH 15 Outcomes Q6 65. Precipitation (Q and Ksp) CH 15 Example 15.7 CH 15 Outcomes Q3 CH 15 Outcomes Q4 Q5 66. Common Ion Effect CH 15 Example 15.12 CH 15 Outcomes Q2 67. Lewis Acids and Bases CH 15 Outcomes Q1 Q2 68. Spontaneous and Nonspontaneous, irreversible and reversible CH 16 Q1-3 69. Entropy Some changes that increase the entropy CH 16 Example 16.3 CH 16 Outcomes Q1-4 70. Second Law of Thermodynamics: CH 16 Example 16.4 71. Third Law of Thermodynamics: ° 72. Standard Entropy change for a reaction??!"# ?Sºreaction = (∑npSºproducts) - (∑nrSºreactants) CH 16 Example 16.6 CH 16 Outcomes Q1-7 73. Gibbs Free Energy, ?G 74. Three ways to calculate ??°!"# • Calculate Free Energy Changes with ??°!"# = ??°!"# − ???°!"# CH 16 Example • Calculate ??°!"# with Tabulated Values of Free Energies Formation ?Goreaction = ∑nGof(products) - ∑nGof(reactants) CH 16 Example • Determining ??°!"# for a Stepwise Reaction from the Changes in Free Energy for Each of the Steps CH 16 Example 75. ??°!"# = ??°!"# − ???°!"# 76. ?G under Nonstandard Conditions DG = DG° + RTlnQ. Free Energy and Equilibrium ?Gº and K DG° = −RTlnK CH 16 Example CH 16 Outcomes Q1-11 77. Voltaic Cell (Galvanic Cell), Cell notation Anode, Cathode, Salt Bridge CH 17 Example 17.3 CH 17 Outcomes Q1-4 78. Cell Potential, standard cell potential E°cell CH 17 Example 17.4 79. Predicting Spontaneity Direction of Redox Reactions CH 17 Outcomes Q1-5 80. E°cell, DG°, and K CH 17 Example 17.5 81. Nernst Equation CH 17 Example 17.6 82. Concentration Cell CH 17 Example 17.7 CH 17 Outcomes Q1-6 83. Electrolytic cells CH 17 Example 17.8 CH 17 Outcomes Q1-2 The boiling point of water under an external pressure of 0.50 atm is ________°C
Already member? Sign In