Fill This Form To Receive Instant Help

Help in Homework
trustpilot ratings
google ratings


Homework answers / question archive / 1)Total blood volume (in ml) per body weight (in kg) is important in medical research

1)Total blood volume (in ml) per body weight (in kg) is important in medical research

Statistics

1)Total blood volume (in ml) per body weight (in kg) is important

in medical research. For healthy adults, the red blood cell volume mean is about μ = 28 ml/kg†. Red blood cell volume that is too low or too high can indicate a medical problem. Suppose that Roger has had seven blood tests, and the red blood cell volumes were as follows.31254337293927The sample mean is x ≈ 33.0 ml/kg. Let x be a random variable that represents Roger's red blood cell volume. Assume that x has a normal distribution and σ = 4.75. Do the data indicate that Roger's red blood cell volume is different (either way) from μ = 28 ml/kg? Use a 0.01 level of significance.


(a) What is the level of significance?______


State the null and alternate hypotheses. Will you use a left-tailed, right-tailed, or two-tailed test? 

-H0: μ = 28 ml/kg; H1:  μ ≠ 28 ml/kg; two-tailed
-H0: μ = 28 ml/kg; H1:  μ > 28 ml/kg; right-tailed     
-H0: μ ≠ 28 ml/kg; H1:  μ = 28 ml/kg; two-tailed
-H0: μ = 28 ml/kg; H1:  μ < 28 ml/kg; left-tailed

(b) What sampling distribution will you use? Explain the rationale for your choice of sampling distribution. 

-The standard normal, since we assume that x has a normal distribution with unknown σ.
-The standard normal, since we assume that x has a normal distribution with known σ.     
-The Student's t, since we assume that x has a normal distribution with known σ.
-The Student's t, since n is large with unknown σ.

What is the value of the sample test statistic? (Round your answer to two decimal places.)________
 


(c) Find (or estimate) the P-value. (Round your answer to four decimal places.)______


Sketch the sampling distribution and show the area corresponding to the P-value. 


(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? 

-At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant.
-At the α = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant.     
-At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
-At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.

(e) State your conclusion in the context of the application.

-There is sufficient evidence at the 0.01 level to conclude that Roger's average red cell volume differs from the average for healthy adults.
-There is insufficient evidence at the 0.01 level to conclude that Roger's average red cell volume differs from the average for healthy adults.   ___________________________________________________________________________________________________________________
2.Let x be a random variable that represents the pH of arterial plasma (i.e., acidity of the blood). For healthy adults, the mean of the x distribution is μ = 7.4.† A new drug for arthritis has been developed. However, it is thought that this drug may change blood pH. A random sample of 31 patients with arthritis took the drug for 3 months. Blood tests showed that x = 8.5 with sample standard deviation s = 2.7. Use a 5% level of significance to test the claim that the drug has changed (either way) the mean pH level of the blood.


(a) What is the level of significance?______
 
State the null and alternate hypotheses. 

-H0: μ ≠ 7.4; H1:  μ = 7.4
-H0: μ > 7.4; H1:  μ = 7.4     
-H0: μ = 7.4; H1:  μ < 7.4
-H0: μ = 7.4; H1:  μ ≠ 7.4
-H0: μ = 7.4; H1:  μ > 7.4

(b) What sampling distribution will you use? Explain the rationale for your choice of sampling distribution. 

-The Student's t, since the sample size is large and σ is unknown.
-The standard normal, since the sample size is large and σ is unknown.     
-The Student's t, since the sample size is large and σ is known.
-The standard normal, since the sample size is large and σ is known.

What is the value of the sample test statistic? (Round your answer to three decimal places.) ________
(c) Find the P-value. (Round your answer to four decimal places.)________
 
Sketch the sampling distribution and show the area corresponding to the P-value. 


(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? 

-At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
-At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.     
-At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
-At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.

(e) Interpret your conclusion in the context of the application. 

-There is sufficient evidence at the 0.05 level to conclude that the drug has changed the mean pH level of the blood.
-There is insufficient evidence at the 0.05 level to conclude that the drug has changed the mean pH level of the blood.  ___________________________________________________________________________________________________________
Unfortunately, arsenic occurs naturally in some ground water†. A mean arsenic level of μ = 8.0 parts per billion (ppb) is considered safe for agricultural use. A well in Texas is used to water cotton crops. This well is tested on a regular basis for arsenic. A random sample of 31 tests gave a sample mean of x = 7.2 ppb arsenic, with s = 3.0 ppb. Does this information indicate that the mean level of arsenic in this well is less than 8 ppb? Use α = 0.10.


(a) What is the level of significance?______
 
State the null and alternate hypotheses. 

-H0: μ = 8 ppb; H1:  μ > 8 ppb
-H0: μ = 8 ppb; H1:  μ ≠ 8 ppb     
-H0: μ < 8 ppb; H1:  μ = 8 ppb
-H0: μ = 8 ppb; H1:  μ < 8 ppb
-H0: μ > 8 ppb; H1:  μ = 8 ppb

(b) What sampling distribution will you use? Explain the rationale for your choice of sampling distribution. 

-The Student's t, since the sample size is large and σ is unknown.
-The standard normal, since the sample size is large and σ is unknown.     
-The standard normal, since the sample size is large and σ is known.
-The Student's t, since the sample size is large and σ is known.

What is the value of the sample test statistic? (Round your answer to three decimal places.)_______
 


(c) Find the P-value. (Round your answer to four decimal places.)_________
 


Sketch the sampling distribution and show the area corresponding to the P-value. 


(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? 

-At the α = 0.10 level, we reject the null hypothesis and conclude the data are statistically significant.
-At the α = 0.10 level, we reject the null hypothesis and conclude the data are not statistically significant.     
-At the α = 0.10 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
-At the α = 0.10 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.

(e) Interpret your conclusion in the context of the application. 

-There is sufficient evidence at the 0.10 level to conclude that the mean level of arsenic in the well is less than 8 ppb.
-There is insufficient evidence at the 0.10 level to conclude that the mean level of arsenic in the well is less than 8 ppb.   

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Related Questions