Fill This Form To Receive Instant Help
Homework answers / question archive / Bond X is a premium bond making semiannual payments
Bond X is a premium bond making semiannual payments. The band has a coupon rate of 88 percenta Yn of 60 percent and has 13 years to maturity. Bond Yacount Dond making semiannual payments. This bond has a coupon rate of 6 8 percent a YTM of 8 percent and has 13 years to matty Assume the best eman undanged and both bonds tuve a par value of $1,000
Current Bond price |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =13x2 |
Bond Price =∑ [(8.8*1000/200)/(1 + 6.8/200)^k] + 1000/(1 + 6.8/200)^13x2 |
k=1 |
Bond Price = 1170.81 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =13x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8.8/200)^k] + 1000/(1 + 8.8/200)^13x2 |
k=1 |
Bond Price = 846.92 |
Price in 1 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =12x2 |
Bond Price =∑ [(8.8*1000/200)/(1 + 6.8/200)^k] + 1000/(1 + 6.8/200)^12x2 |
k=1 |
Bond Price = 1162.28 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =12x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8.8/200)^k] + 1000/(1 + 8.8/200)^12x2 |
k=1 |
Bond Price = 853.59 |
Price in 3 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =10x2 |
Bond Price =∑ [(8.8*1000/200)/(1 + 6.8/200)^k] + 1000/(1 + 6.8/200)^10x2 |
k=1 |
Bond Price = 1143.42 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =10x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8.8/200)^k] + 1000/(1 + 8.8/200)^10x2 |
k=1 |
Bond Price = 868.79 |
Price in 8 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(8.8*1000/200)/(1 + 6.8/200)^k] + 1000/(1 + 6.8/200)^5x2 |
k=1 |
Bond Price = 1083.59 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8.8/200)^k] + 1000/(1 + 8.8/200)^5x2 |
k=1 |
Bond Price = 920.48 |
Price in 12 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =1x2 |
Bond Price =∑ [(8.8*1000/200)/(1 + 6.8/200)^k] + 1000/(1 + 6.8/200)^1x2 |
k=1 |
Bond Price = 1019.02 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =1x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8.8/200)^k] + 1000/(1 + 8.8/200)^1x2 |
k=1 |
Bond Price = 981.25 |
Price in 13 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =0x2 |
Bond Price =∑ [(8.8*1000/200)/(1 + 6.8/200)^k] + 1000/(1 + 6.8/200)^0x2 |
k=1 |
Bond Price = 1000 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =0x2 |
Bond Price =∑ [(6.8*1000/200)/(1 + 8.8/200)^k] + 1000/(1 + 8.8/200)^0x2 |
k=1 |
Bond Price = 1000 |