Fill This Form To Receive Instant Help
Homework answers / question archive / The following is a payoff matrix showing profit in millions of dollars when two companies simultaneously decide on various advertising budgets ($1 million, $2 million, or $3 million): Pizza Hut $1 mill $2 mill $3 mill $1 mill $185 / $230 160 / 225 135 / 240 Papa Johns $2 mill 210 / 225 170 / 210 145 / 215 $3 mill 200 / 195 175 / 200 140 / 210 a
The following is a payoff matrix showing profit in millions of dollars when two companies simultaneously decide on various advertising budgets ($1 million, $2 million, or $3 million):
Pizza Hut |
||||
$1 mill |
$2 mill |
$3 mill |
||
$1 mill |
$185 / $230 |
160 / 225 |
135 / 240 |
|
Papa Johns |
$2 mill |
210 / 225 |
170 / 210 |
145 / 215 |
$3 mill |
200 / 195 |
175 / 200 |
140 / 210 |
a. In the first round of strategy elimination (when all three possible budgets are under consideration), which ad budget would the companies exclude?
b. After the first round of elimination (previous question), would either company make a second-round elimination?
c. What would be the likely outcome of this simultaneous advertising decision (i.e. what ad budget would each company end up choosing)?
The following is a payoff matrix showing profit in millions of dollars when two companies simultaneously decide on various advertising budgets ($1 million, $2 million, or $3 million):
$1 mill | $2 mill | $3 mill | |
$1 mill | 185 , 230 | 160 , 225 | 135 , 240 |
$2 mill | 210 , 225 | 170 , 210 | 145 , 215 |
$3 mill | 200 , 195 | 175 , 200 | 140 ,210 |
Papa Johns is the row player and Pizza Hut is the column player. The first term of each cell represents the pay-off of Papa Johns from a particular strategy and the second term represents the pay-off of Pizza Hut. We indicate the optimal choices by underlinning them.
Thus , Pizza Hut never chooses $2 mill irrespective of what Papa Johns chooses. $2 mill is a strictly dominated strategy for Pizza Hut and will be eliminated in the first round by the iterated elimination of strictly dominated strategies.
The pay-off matrix now becomes :
$1 mill | $3 mill | |
$1 mill | 185 , 230 | 135 , 240 |
$2 mill | 210 , 225 | 145 , 215 |
$3 mill | 200 , 195 | 140 , 210 |
Thus , Papa Johns always chooses $2 mill irrespective of what Pizza Hut chooses. So , $2 mill is a strictly dominant strategy for Papa Johns. The other two strategies ( $1 mill and $3 mill ) are both strictly dominated strategies for Papa Johns and will be eliminated by the expected iteration of strictly dominated strategies.
The pay-off matrix now becomes :
$ 1 mill | $ 3 mill | ||
$ 2 mill | 210 , 225 | 145 , 215 |
Thus , the pure strategy Nash Equilibrium for this game is ($2 mill , $1 mill ) and the pay-offs would be (210,225)
Thus , the most likely outcome of this simultaneous advertising decision is that Papa Johns will choose $2 mill and Pizza Hut will choose $1 mill and they would end up getting a pay-off of $210 and $225 respectively.