Fill This Form To Receive Instant Help

Help in Homework
trustpilot ratings
google ratings


Homework answers / question archive / Class Project (Company – Aetna) The Multiple Regression Model and Strategic Plan Forecast -  This assignment is the class project report to the executives of your assigned company

Class Project (Company – Aetna) The Multiple Regression Model and Strategic Plan Forecast -  This assignment is the class project report to the executives of your assigned company

Statistics

Class Project (Company – Aetna)

The Multiple Regression Model and Strategic Plan Forecast -  This assignment is the class project report to the executives of your assigned company.  You written discussion is critical and should be well organized and grammatically correct.  The best reports are well written and use Minitab results to support the points being made.  This completed assignment is worth up to 25 points and serves as the class project Strategic Plan Forecast.  Late submissions will not be graded.

This assignment is essentially the multiple regression and strategic plan forecast analysis portion of your project and includes the work in assignments that you have done thus far. This means that I expect you to develop a good regression model forecast using more than one significant independent variables (Xs).  That is you must use at least two independent (X) variables to forecast your company revenue (Y) for 8 quarters beyond the end of the Y variable data series.  This means that

1) You will need to develop the best multiple regression model for the company revenue.

2) Then you will predict (forecast) the hold out period of Y with the model using the hold out values (8) for each X variable.  You should not run the X variables separately -- they should all be in the model at the same time (multiple regression).  Single X variable models (simple regression) will not do for this assignment.


3) Then you should comment on the accuracy of the model using RMSE and MAPE and the reliability of the model with model F, Adjusted R-square, t and p statistics, regression ACF LBQ values, DW statistic and the KB coefficient t-value.

4) Finally, you will need to forecast the next 8 quarters of your company revenue past the end of the company revenue data series. 


Ideally, if you made a good choice of variables you should be able to include all three or more X variables in your regression equation.  Be sure to complete each part and write your responses supported by Minitab/excel work.  Remember, that you are writing this to company executives and you must be clear in what you are showing and why.  This assignment should be turned in to me as a Word document.  You should include excel and Minitab tables and graphs in the body of Word document as required.  Be sure to comment on each of the 10 points below. 

1.   Run scatter plots and a correlation matrix on your project variables and comment on their values and significance if you have done this earlier you may use that analysis here. 

2.  Note any seasonality in the company revenue Y data with ACF (autocorrelation analysis of Y).  You may use ACFs that you previously developed.

3.   Determine if any of your variables require transformation.  If they do, calculate the transformed values and show them in an excel Data Appendix inserted at the end of this report.  Create and comment on a scatter plot with a regression line with Y for each transformed X to illustrate the linearity of the XY data relationship.  Create and comment on a correlation matrix table for the Y, X and X transformed values.

4.   Determine if your model requires dummy variables (e.g. for Y variable seasonality or significant events) and include a table of the dummy variable values for regression analysis. Note that if any seasonal dummy variables are used and is significant then all of the seasonal dummy variables may be used.  Use R square and F as primary determinants of the best model.

Note the significance of each slope term in the model.  Rule-- if the coefficient is not significant then you may not use the variable (dummy or continuous) in the model to forecast with the exception of the seasonal dummy variables above.

5.       Investigate your best model using appropriate statistics or graphs to comment on possible:

a.       Autocorrelation (Serial correlation) with the DW statistic

b.      Heteroscedasticity with a residuals versus order plot (look for a megaphone effect) and apply the KB test.

c.       Multicollinearity with the VIF statistic

Comment on your use of the best remedies for any of the problems identified in 6 above and make the appropriate changes to your regression model if required.  Rerun the model and evaluate the fit again including error measures, R adjusted square, F value, slope coefficient significance, DW and VIF.

6.       Evaluate the best multiple regression model accuracy with 2 error measures (RMSE and MAPE) each for the fit and again for the hold out period.  Comment on the acceptability of the error (accuracy) measures relative to your company.

 

7.       Evaluate the best model fit residuals and comment on their randomness using autocorrelation functions (ACFs) , histogram and a normality plot (You should use a four-in-one graphs as well). Comment on the cause of the error -- trend, cycle, seasonality and if it is statistically significant.  You may also use a histogram with fit to illustrate and comment on residual distribution and mean (indicating any model bias).

 

8.       Forecast for the Strategic Plan period using your forecast X values to forecast Y.  You must use your best Minitab Regression model from the analysis above.  After running the best model in Fit Regression go to the Predict menu and place the columns for the forecast X variables values and any dummy variable predictions in the prediction intervals for new observations area.  The forecast must cover the next 8 quarters past the end of your company revenue data series.  (This is the primary objective of the class)

 

9.       Show at time series plot of the strategic plan forecast that you have developed for your company using the forecasts of your selected X variables.

10.    Comment on the business implications for the 8 quarter strategic plan revenue forecast along with any assumptions that you made relative to future values of the independent variables including any dummy variables.

There is also a slide presentation:

Assignment 11 Strategic Plan Forecast Presentation due by midnight Nov. 28. Prepare a 3 slide 5 minute presentation to the executives (President and VPs) your assigned company on the model and variables that you used, the accuracy and reliability of the model and the Strategic Plan Revenue Forecast for the next 8 quarters.  This is worth up to 2 extra credit points.

You may use statistics and plots in the presentation.  Keep the slides focused on conveying the main points of your findings.  The conclusion or last slide showing the plan forecast should include bullet points on the implications of the forecast to your company's business future.

 

Aetna (AET)

 

Date

Revenue

31-03-1999

17640

30-06-1999

18760

30-09-1999

20380

31-12-1999

22110

31-03-2000

24310

30-06-2000

25080

29-09-2000

26140

29-12-2000

25390

30-03-2001

23930

29-06-2001

23750

28-09-2001

21800

31-12-2001

25190

28-03-2002

24030

28-06-2002

22550

30-09-2002

21200

31-12-2002

19880

31-03-2003

19080

30-06-2003

18480

30-09-2003

18120

31-12-2003

17980

31-03-2004

18330

30-06-2004

18740

30-09-2004

19310

31-12-2004

19900

31-03-2005

20510

30-06-2005

21130

30-09-2005

21790

30-12-2005

22490

31-03-2006

23300

30-06-2006

24050

29-09-2006

24650

29-12-2006

25150

30-03-2007

25610

29-06-2007

26150

28-09-2007

26810

31-12-2007

27600

31-03-2008

28640

30-06-2008

29670

30-09-2008

30340

31-12-2008

30950

31-03-2009

31830

30-06-2009

32670

30-09-2009

33770

31-12-2009

34760

31-03-2010

34770

30-06-2010

34650

30-09-2010

34460

31-12-2010

34250

31-03-2011

34010

30-06-2011

33810

30-09-2011

33750

30-12-2011

33780

30-03-2012

34310

29-06-2012

34800

28-09-2012

35240

31-12-2012

36600

28-03-2013

37220

28-06-2013

39920

30-09-2013

44040

31-12-2013

47290

31-03-2014

51750

30-06-2014

54720

30-09-2014

56410

31-12-2014

58000

31-03-2015

59100

30-06-2015

59830

30-09-2015

60060

31-12-2015

60340

31-03-2016

60940

30-06-2016

61650

 

FRED Graph Observations

               

Federal Reserve Economic Data

               

Link: https://research.stlouisfed.org/fred2

             

Help: https://research.stlouisfed.org/fred2/help-faq

           

Economic Research Division

               

Federal Reserve Bank of St. Louis

               

Real Net Exports of Goods and Services, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate

Q07053USQ027NNBR

                 
                   

Frequency: Quarterly

Not Seasonally Adjusted

           

observation_date

NETEXC

               

2000-01-01

-449.0

               

2000-04-01

-464.9

               

2000-07-01

-493.5

               

2000-10-01

-503.8

               

2001-01-01

-494.0

               

2001-04-01

-483.8

               

2001-07-01

-508.7

               

2001-10-01

-521.8

               

2002-01-01

-546.0

               

2002-04-01

-567.7

               

2002-07-01

-585.1

               

2002-10-01

-638.4

               

2003-01-01

-620.3

               

2003-04-01

-649.7

               

2003-07-01

-642.1

               

2003-10-01

-655.4

               

2004-01-01

-676.1

               

2004-04-01

-740.0

               

2004-07-01

-753.0

               

2004-10-01

-769.9

               

2005-01-01

-774.1

               

2005-04-01

-773.5

               

2005-07-01

-777.7

               

2005-10-01

-803.9

               

2006-01-01

-799.0

               

2006-04-01

-799.1

               

2006-07-01

-819.7

               

2006-10-01

-759.3

               

2007-01-01

-771.0

               

2007-04-01

-753.7

               

2007-07-01

-703.2

               

2007-10-01

-622.6

               

2008-01-01

-623.7

               

2008-04-01

-550.4

               

2008-07-01

-526.9

               

2008-10-01

-530.3

               

2009-01-01

-451.3

               

2009-04-01

-366.3

               

2009-07-01

-383.6

               

2009-10-01

-380.4

               

2010-01-01

-408.8

               

2010-04-01

-469.7

               

2010-07-01

-498.4

               

2010-10-01

-458.1

               

2011-01-01

-466.2

               

2011-04-01

-455.2

               

2011-07-01

-454.3

               

2011-10-01

-461.7

               

2012-01-01

-462.7

               

2012-04-01

-452.7

               

2012-07-01

-446.8

               

2012-10-01

-426.0

               

2013-01-01

-414.4

               

2013-04-01

-421.1

               

2013-07-01

-416.1

               

2013-10-01

-368.1

               

2014-01-01

-412.0

               

2014-04-01

-427.5

               

2014-07-01

-409.4

               

2014-10-01

-454.0

               

2015-01-01

-521.2

               

2015-04-01

-524.9

               

2015-07-01

-547.1

               

2015-10-01

-566.6

               

2016-01-01

-566.3

               

2016-04-01

-556.3

               

 

Option 1

Low Cost Option
Download this past answer in few clicks

28.98 USD

PURCHASE SOLUTION

Already member?


Option 2

Custom new solution created by our subject matter experts

GET A QUOTE