Fill This Form To Receive Instant Help

Help in Homework
trustpilot ratings
google ratings


Homework answers / question archive / The labor supply of married women has been a subject of a great deal of economic research

The labor supply of married women has been a subject of a great deal of economic research

Economics

  1. The labor supply of married women has been a subject of a great deal of economic research.  Given the data on women who worked in the previous year and those who have not, several models have been estimated.  The variable indicating whether a woman  worked  is  LFP=Labor  Force  Participation,  which  takes  the  value  1  if  a woman worked and 0 if she did not.

 

(a)  Consider the following supply equation specification:

 

 

HOURS = β12ln(wage)+β2educ+β4age+β5kidsl6+β6kids618+β7nwifeinc+µ

 

 

What sign do you expect each of the coefficients to have, and why?              (b)  The variable nwifeinc=non-wife income is defined as

 nwifeinc = faminc wage

 hours

 

 

 

The summary statistics for the variables:  wife’s age, number of children less than

6 years old in the household, and the family income for the women who worked (LFP=1) and those who did not work (LFP=0) are provided in the table.  Comment on any differences you observe.

 

 

 

MEAN              Standard Deviation

Variable 

   LFP=1     LFP=0    

LFP=1        LFP=0 age

41.97        

43.28        7.72               

 8.47 kidsl6               0.14

0.37       

0.39                 0.6 4

 faminc           24130 

21698     

11671             12728

 

 

 

    1. NWIFEINC  and  ln(WAGE)  variables  in  part  (a)  are  endogenous.   Can  the HOURS equation be estimated satisfactory using the

 

 

 

    1. Table 1 provides the results of the least squares regression on only the women who worked (LFP=1).  Did things come out as expected?  If not, why?

 

TABLE 1 

Dependent variable:  HOURS

Included observations:  428 

 

 

 

  

 Coef.   

Std.Err.     

 z       P > |z|   

Intercept                                        

2114.69     

   340.13     

6.22         

0.000 

lnwage                                          

     -17.41   

       54.22   

  -0.32     

     0.75 

educ 

  -14.44   

       17.96   

  -0.80      

    0.42 

age 

  -7.73   

         5.53   

  -1.40      

    0.16 

kidsl6 

-342.51   

     100.01   

  -3.43      

  0.000 

kids618 

-115.02   

       30.83   

  -3.73      

  0.000 

nwifeinc                                        

      -0.01   

         0.01   

  -1.16      

    0.25 

  

    1. The  results  of  the  following  wage  equation  for  the  women  who  worked are provided in Table 2.  What is the effect on wage of an additional year of education?

  ln(wage) = α+ α2educ + α3age + α4kidsl6 + α6kids618 + α7nwifeinc +  

 

 

 

TABLE 2 

Dependent variable:  LNWAGE Included observations:  428 

 

 

 

  

 Coef.    

Std.Err.       

z        P > |z|   

Intercept                                            

      -0.357    

         0.31     

 -1.13           

0.26 

educ 

  0.099   

        0.015    

 6.615          

 0.00 

age 

 -0.001   

        0.005   

  -0.650        

  0.52 

kidsl6 

 -0.056   

        0.088   

  -0.631        

  0.53 

kids618 

-0.0176   

        0.027   

  -0.633        

  0.53 

nwifeinc                                             

-5.69E-06    

 3.32E-06     

1.715           

0.08 

exper                                                  

     0.0407    

       0.013     

3.044           

0.00 

exper2                                                                     

          0.001    

       0.011     

-1.860          

0.06 

 

 

    1. Is the supply equation in part (a) identified?  Name the instrumental variable if any.

 

    1. Two-stage least squares estimation of the supply equation is provided in Table

3.  Discuss the sign and significance of the estimated parameters.

 

TABLE 3 

Dependent variable:  HOURS

Included observations:  428 

 

 

 

  

  Coef.    

Std.Err.      

  z         P > |z|   

Intercept                                        

2432.198      

   594.17      

4.093          

0.000 

lnwage                                          

  1544.818     

480.7387    

  3.213        

  0.004 

educ 

-177.449    

     58.142     

-3.0519      

  0.002 

age 

 -10.784    

       9.577    

  -1.126       

  0.260 

kidsl6 

-210.834    

   176.934    

  -1.192       

  0.234 

kids618 

 -47.557    

     53.917    

  -0.835       

  0.404 

nwifeinc                                        

      -0.001    

       0.006    

  -1.427       

  0.154 

 

 

  1. It is common for companies to spend money and time on employee training pro- grams to improve productivity in the workplace.  A company is interested in an- alyzing the effect of a training program on employees’ productivity.  Data from a random sample of 10,000 workers ages 18 and older were collected and a regression

 

 

P RODUCT IV IT Y  = Xβ + αT RAINING + µ

 

 

was  estimated,  where  X  is  a  matrix  of  socio-demographic  characteristics,  and TRAINING  is  a  dummy  variable  that  is  equal  to  1  if  the  person  participated in the  training  program  and is equal  to zero  otherwise.  TRAINING  can depend on  many  factors  and  one  of  them  could  be  whether  a  company  received  a  job training grant to help subsidize the cost of the training, therefore

 

 

T RANING = Zγ + θGRANT +  .

 

 

Here Z is a matrix of firm related factors and GRANT=1 if company received a training grant and =0 otherwise.

 

    1. In  estimating  the  PRODUCTIVITY  equation  the  variable  TRAINING  can potentially be endogenous.  Why using OLS can fail in estimating this regres- sion model?  Explain.

 

    1. Propose an estimation method that will help resolve this endogeneity problem.    Describe the estimation method in detail.
    2. Is the  PRODUCTIVITY  equation  identified?  If so  why?  Is it  exact,  under or over -identified?
    3. Now suppose that you only observe the positive level of productivity for those employees who did the training and zero for those who did not do the training. Discuss  and  name  the  model  you  will  use  in  estimating  PRODUCTIVITY equation. What  will  happen  if  you  use  OLS  to  estimate  this  model?    Is endogeneity of TRANING is still a problem?  If so, how can it be fixed?

 

    1. What will happen if you only select positive levels of productivity and esti- mate the model?  Explain.

 

  1. In general, the two-stage least squares estimation (2SLS) procedure can be used to estimate the parameters of any identified equation within a simultaneous equation system.   In  a  system  of  M  simultaneous  equations  let  y1, y2, y3, ..., yn   be  the  en- dogenous variables.  Let k be the number of exogenous variables:  x1, x2, x3, ..., xk. Suppose the first equation is:

 

 y= α2y+ α3y+ β1x+ β2x+ µ1

 

 

    1. Describe the steps of 2SLS estimation method in detail, so a researcher who is reading your answer can easily follow the steps you described and estimate the model.

 

    1. What is an Instrumental Variable(IV)? Be specific.

 

  1. Write  the  following  models  in  terms  of  a  latent  variable,  comment  on  how  to interpret the results of each model and give examples.

 

    1. Probit
    2. Multinomial Logit
    3. Conditional Logit
    4. Ordered Probit
    5. Tobit

 

  1. The first-order autoregressive model is given by

 

 y= α+ α1ytt

 

 

lets assume that the value of yis known.  Then we can write yas

 

 

y= α+ α1y1.

    1. Using the above information write yas a function of yand then as a function of  yby replacing ywith above given expression.
    2. Continue the process and write yas a function of y0.  Simplify your answer by  combining like terms.
    3. Since y= α0 + α1yt1 t, write the expression for yusing yknowing that the value of ytis obtained from ytand the value of ytis obtained from ytand so on.  Identify the expressions for intercept, slope, and error terms.

 

  1. Suppose that your company was hired by the Mayor of one of the America’s large cities  to  help  address  traffic  congestion  problems  during  rush  hour.   You  were given a data on the mode of transportation chosen by commuters, distance trav- eled from home to work/subway,  etc.,  and all the individual  and household level characteristics that are needed for the analysis.

 

    1. After careful analysis of the data, you found that you can group the modes of transportation into four general categories ’subway’, ’bus’, ’car’, and ’human- powered’  (walk,  bicycle).   Specify  an  econometric  model  that  fits  the  data best, i.e.  write down the model you will be estimating and label your variables carefully.  Is your model linear or non-linear?  How are you going to interpret your results?

 

    1. List all the factors (independent variables) that you as a research think might affect the choice of transportation.

 

  1. The RESET test (Regression Specification Error Test) is designed to detect omit- ted variables and incorrect functional form.  It proceeds as follows.  Suppose that we have specified and estimated the regression model

  

y= β+ β2xi2  + β3xi3  + µi.

 

Let (βˆ1, βˆ2, βˆ3) be the least squares estimates and let

 

i     =   β+ β2xi2  + β3xi3  + γ1+i  µi                                                          (1) yˆi     =   β+ β2xi2  + β3xi3  + γ1+i                  γ2+i  µi                                        (2)

 

 

In  (1)  a  test  for  misspecification  is  a  test  of  H0   :  γ1   =  0  against  the  alternative

H: γ= 0. In (2),  testing H: γ= γ= 0 against the alternative H: γ= 0 and/or γ= 0 is a test for misspecification.  In the first case a t- or an F-test can be  used.  An  F-test  is  required  for  the  second  equation.  Rejection  of  H0   implies the original model is inadequate and can be improved.  A failure to reject Hsays

 

 

 

the test has not been able to detect any misspecification. The following table contains output for the two models

yi     =   β+ β2x+ β3w+ µi                                                            (3) yi     =   β+ β2xi                                                                                (4)

 

 

obtained using n=35 observations.  RESET test applied to the second model yields

 

Variable

         Coef.    Std.Error    t-Statistic       

Coef.    Std.Error    t-Statistic

C            

      3.6356           2.763            1.316

   -5.8382           2.000           -2.919

X            

  -0.99845           1.235         -0.8085

    4.1072         0.3383            12.14

W           

   0.49785         0.1174            4.240

 

 

F-values of 17.98 (for yˆ2i                                          ) and 8.72 (for yˆ2i                   and yˆi3 ).  Answer the following questions using the results provided in the table:

 

  1. Should  wi   be  included  in  the  model?    What  can  you  say  about  omitted-  variable bias?
  2. You have discovered that the correlation between x and w is rxw=0.975.  What can you say about the existence of collinearity and its possible effects?

 

  1. (a)  Why is perfect multicollinearity a problem?
    1. Give an example of two (or more) perfectly collinear variables?
    2. Suppose that Xand Xare highly collinear  and we estimate the following model  Yi   =  β+ β21X1i  + β3X2i  + ei.   Can  we  use  OLS  to  find  unbiased estimates of the coefficients.  Why are these coefficients difficult to estimate precisely (give intuition).

 

  1. (a)  Suppose  you  are  interested  in  the  effect  of  high  school  GPA  (gpai)  on  ad- mission to Texas University (admiti), where admitis a binary variable with  admiti   =  1  indicating  admission  and  admiti   =  0  indicating  rejection. You estimate the following regression using OLS, admit= β+ β2gpa+ ei and find addmit= 1.2 for some units.  Why is this a questionable predicted value?  How could you model this to avoid this problem?

 

  1. (a)  Suppose  you  are  interested  in  the  effect  of  years  of  education  on  income. Why would a regression of income on education give a biased estimate of this effect?  Could this biased estimate be used for forecasting?

 

 

  1. Suppose  you  are  interested  in  modeling  U.S.  GDP  data  using  an  autoregression model.  Describe two approaches to choosing the lag-length.  What are the advan- tages and disadvantages of each?

 

  1. High humidity levels can cause drivers to be drowsy and increase traffic accidents. We  would  like  to  estimate  the  effect  of  humidity  on  traffic  accidents.   We  have a  cross  sectional  data  set  of  per-capita  traffic  accident  (accidenti)  and  average humidity (humidityi) data for all states i in 2005.  We also have a panel data set of percapita traffic accident (accidentit) and average humidity (humidityit) data for all states i from 2005-2010.

 

    1. Suppose  I  can  only  use  one  data  set,  which  would  be  the  best  data  set  for finding an unbiased estimate of the impact of humidity on traffic accidents? Why?

 

    1. What would be the best model to estimate this effect.  Carefully explain why.

 

  1. (a)  Specify the Pooled Model and state when it can be used?
    1. What are the consequences of estimating Pooled Model using panel data?
    2. Specify Fixed and Random Effects models.  Write down the regression models and state the differences between the two.

 

  1. In developing an econometric model, you might exclude one or more relevant re- gressors or include one or more irrelevant regressors.

 

    1. What are the consequences of including 1 too many regressors? (b)  What are the consequences of excluding 1 too few regressors?

 

  1. When using non-experimental data in estimating the regression model it is common to have high correlation among some of the regressors which can lead to Exact and Near Multicollinearity.

 

    1. What is Exact Multicollinearity?  How to detect Exact Multicollinearity and what are the remedies?

 

    1. What  is  Near  Multicollinearity?   How  to  detect  Near  Multicollinearity  and what are the remedies?

 

  1. Suppose you are interested in estimating the elasticity of demand for wheat using:

                    

ln(Qi          wheat) = β+ β2ln(Pi           wheat) + ei

 

 

    1. Is  the  independent  variable  (ln(P wheati ))  positively  or  negatively  correlated with the error term?
    2. If we estimated this equation with OLS, would you expect βˆto be larger or smaller than β2?

 

  1. In estimating the regression model y = β1 2x a researcher had options of scaling either  both  or  one  of  the  variables.  Without  scaling  any  of  the  variables  he/she obtained

  

yˆ   =   83.42 + 0.1021x (se)          (43.41)

       (0.0209)

 

 

 

 

where

y=weekly food expenditure by household, in dollars

x=weekly household income * indicates significance at 10% *** indicates significance at 1%.

 

    1. Interpret the above estimated regression model.
    2. Re-write  the  estimated  regression  model  if  x  was  divided  by  100,  i.e.    x 100 .  Interpret the result.
    3. Re-write  the  estimated  regression  model  if  y  was  divided  by  100,  i.e.    y 100 .  Interpret the result.
    4. Re-write the estimated regression model if both x and y were scaled, i.e.   x  100 and   100y   Interpret the result.

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE