Fill This Form To Receive Instant Help
Homework answers / question archive / Consider an ideal 2-state paramagnet
Consider an ideal 2-state paramagnet. The entropy is given by:
S = k [N ln N - Nu ln Nu - Nd ln Nd],
where Nu and Nd are related to total number N, internal energy U, magnetic field B and magnetic moment μ by
Nu = (N - U/μB)/2, Nd = (N + U/μB)/2
(a) Use the relation T-1 = (∂S/∂U)N,B to derive U/μB = -N tanh x (where x = μB/kT)
(b) Show that S can be written as
S = Nk [ln (2 cosh x) - x tanh x]
Following is the text part of the solution. Please see the attached file for complete solution. Equations, diagrams, graphs and special characters will not appear correctly here.
==========================================================
Consider an ideal 2-state paramagnet. The entropy is given by:
S = k [N ln N - Nu ln Nu - Nd ln Nd],
where Nu and Nd are related to total number N, internal energy U, magnetic field B and magnetic moment μ by
Nu = (N - U/μB)/2, Nd = (N + U/μB)/2
(a) Use the relation T-1 = (∂S/∂U)N,B to derive U/μB = -N tanh x (where x = μB/kT)
(b) Show that S can be written as
S = Nk [ln (2 cosh x) - x tanh x]
(c) Find the low and high temperature limits (T → 0 and T → ∞) of S.
I have no idea how to derive this at all. I am unsure as to how to do parts a, b, or c. HELP!!!
(a)
S = k [N ln N - Nu ln Nu - Nd ln Nd],
T-1 = (∂S/∂U)N,B
1/T = (∂S/∂U)N,B = k ∂/∂U [ - Nu ln Nu - Nd ln Nd],
Note: Since N is a constant, ∂N/∂U = 0
Note: ∂( ln X )/∂U = 1/X ∂( X )/∂U
Using these,
1/kT = ∂/∂U [ - Nu ln Nu - Nd ln Nd]
= - Nu ∂( ln Nu )/∂U - ln Nu * ∂( Nu )/∂U - Nd ∂( ln Nd )/∂U - ln Nd * ∂( Nd )/∂U
∂( ln Nu )/∂U = 1/ Nu ∂( Nu )/∂U
1/kT = - Nu (1/ Nu ∂( Nu )/∂U) - ln Nu * ∂( Nu )/∂U - Nd (1/ Nd ∂( Nd )/∂U)- ln Nd * ∂( Nd )/∂U
1/kT = - ∂( Nu )/∂U) - ln Nu * ∂( Nu )/∂U - ∂( Nd )/∂U)- ln Nd * ∂( Nd )/∂U
But, Nu = (N - U/μB)/2, Nd = (N + U/μB)/2
∂( Nu )/∂U) = -1/ 2μB and ∂( Nd )/∂U) = 1/ 2μB
Substituting back,
1/kT = ∂( Nu )/∂U) * [-1 - ln Nu] - ∂( Nd )/∂U) [1 + ln Nd ]
1/kT = -1/ 2μB [-1 - ln Nu] - 1/ 2μB [1 + ln Nd ]
1/kT = 1/ 2μB [ln Nu - ln Nd]
= 1/ 2μB [ln Nu/Nd]
1/kT = 1/ 2μB [ln (N - U/μB)/ (N + U/μB)]
Re arranging
[ln (N - U/μB)/ (N + U/μB)] =2μB/kT = 2x
(N - U/μB)/ (N + U/μB) = e 2x
Solve for U.
Trick to solve this kind of problem: Use the following method
a/b = c/d is same as a+b/a-b = c+d/c-d
(N - U/μB)/ (N + U/μB) = e 2x
2N / 2U/μB = (e 2x + 1)/ (e 2x - 1)
U = N μB (e 2x -1)/ (e 2x + 1) = N μB (e -x - e x)/ (e x + e-x) = - N μB tanh x
(b)
S = k [N ln N - Nu ln Nu - Nd ln Nd],
S /k = [N ln N - Nu ln Nu - Nd ln Nd],
From part (a),
U = - N μB tanh x
Also we know,
Nu = ½ (N - U/μB) = ½ [N + N tanh x]= N (ex/2coshx)
Nd = 1/2(N + U/μB) = ½ [N -N tanh x] = N (e -x/2coshx)
Substituting these on S/k,
S /k = [N ln N - N (ex/2coshx) ln Nu - N (e -x/2coshx) ln Nd],
S /k = N ln N - ½ N ex/coshx * ln Nu - ½ N (e -x/coshx) ln Nd],
S /k = N ln N - ½ N [(ex/coshx) ln Nu + (e -x/coshx) ln Nd]
Lets find ln Nu and ln Nd and find the term (ex/coshx) ln Nu + (e -x/coshx) ln Nd and then substitute above.
Nu = N (ex/2coshx)
ln Nu = ln N + x - ln (2coshx)
Nd = N (e -x/2coshx)
ln Nd = ln N - x - ln (2coshx)
(ex/coshx) ln Nu + (e -x/coshx) ln Nd
= (ex/coshx) (ln N + x - ln (2coshx) + (e -x/coshx) (ln N - x - ln (2coshx)
= [(ex/coshx) + (e -x/coshx) ] [ln N - ln (2coshx)] + x ( ex/coshx - e -x/coshx)
(ex/coshx) ln Nu + (e -x/coshx) ln Nd = 2 [ln N - ln (2coshx)] + 2x tanh x ---------(1)
Substituting back on S/k from (1)
S /k = ln N - ½ [2 [ln N - ln (2coshx)] + 2x tanh x]
S /kN = - ½ [ -2 ln (2coshx)] + 2x tanh x]
S /kN = ln (2coshx)] - x tanh x]
S = Nk [ln (2 cosh x) - x tanh x]
(c)
At T reaches zero, x reaches infinity.
lets see what happens to cosh x and tanh x at this limit.
cosh x = (ex + e-x) / 2
as x reaches infinity ex reaches infinity and + e-x reaches zero.
as x reaches infinity , cosh x reaches infinity
tanh x = sinhh x /cosh x = (ex - e-x) / (ex + e-x) = (1 - e-2x) / (1 + e-2x)
as x reaches infinity tanh x reaches one.
as x reaches infinity S = Nk [ln (2 cosh x) - x tanh x] reaches infinity.
As T reaches infinity, x reaches zero. At this limit, cosh x = 1 and tanh x = 0
S = Nk [ln (2 cosh x) - x tanh x] = Nk ln 2