Fill This Form To Receive Instant Help

Help in Homework
trustpilot ratings
google ratings


Homework answers / question archive / The principal randomly selected six students to take an aptitude test

The principal randomly selected six students to take an aptitude test

Statistics

The principal randomly selected six students to take an aptitude test. Their scores were: 73.4 79.0 87.1 71.6 74.7 85.9 Determine a 90% confidence interval for the mean score for all students. a)73.10 < ? < 84.14 b)73.20 < ? < 84.04 c)84.04 < ? < 73.20 d)84.14 < ? < 73.10

pur-new-sol

Purchase A New Answer

Custom new solution created by our subject matter experts

GET A QUOTE

Answer Preview

Solution:

Sample size n = 6

73.4, 79.0, 87.1, 71.6, 74.7, 85.9

Using calculator , first we find the sample mean \bar x and sample standard deviation s

\bar x = 78.616666666667

s = 6.5870833201552

Our aim is to construct 90% confidence interval.   

\therefore c = 0.90

\therefore\alpha = 1- c = 1- 0.90 = 0.10

\therefore  \alpha/2 = 0.10 \slash 2 = 0.05

Also, d.f = n - 1 = 5  

\therefore  t_{\alpha/2,d.f.}  =  ta/2,1-1  =  t0.05,5 = 2.015

( use t table or t calculator to find this value..)

The margin of error is given by

E =  t\alpha/2,d.f. * (s / \sqrt{} n)

= 2.015 * (6.5870833201552 / \sqrt{} 6 )

= 5.42

Now , confidence interval for mean(\mu) is given by:

(\bar x - E ) <  \mu <  (\bar x + E)

(78.616666666667 - 5.42)   <  \mu <  (78.616666666667 + 5.42)

73.20 <  \mu < 84.04

Option b) is correct.

Related Questions