Why Choose Us?
0% AI Guarantee
Human-written only.
24/7 Support
Anytime, anywhere.
Plagiarism Free
100% Original.
Expert Tutors
Masters & PhDs.
100% Confidential
Your privacy matters.
On-Time Delivery
Never miss a deadline.
The total cost (in hundreds of dollars) to produce xx units of a product is C(x)=5x−69x+5C(x)=5x−69x+5
The total cost (in hundreds of dollars) to produce xx units of a product is C(x)=5x−69x+5C(x)=5x−69x+5. Find the average cost for each of the following production levels.
a) 3030 units
b) xx units
c) Find the marginal average cost function.
Expert Solution
Given Data:
- The total cost of product is: C(x)=5x−69x+5C(x)=5x−69x+5
(b)
The quantity of product is: xunitxunit
The average cost is total cost divide by the number of units of product
The expression for average cost of product of xunitxunit is
Caverage(x)=C(x)xCaverage(x)=C(x)x
Substitute the value and solve the above expression
Caverage(x)=5x−69x+5x=5x−6x(9x+5)=5x−69x2+5x??(I)Caverage(x)=5x−69x+5x=5x−6x(9x+5)=5x−69x2+5x??(I)
Thu the average cost of xunitxunit is 5x−69x2+5x5x−69x2+5x
(a)
- The quantity of product is: x=30unitx=30unit
Substitute the value and solve the expression (I)
Caverage(30)=5(30)−69(30)2+5(30)=150−69(900)+150=0.01811dollarCaverage(30)=5(30)−69(30)2+5(30)=150−69(900)+150=0.01811dollar
Thus the average cost of product for 30units30units is 0.01811dollar0.01811dollar
(c)
Differentiate the expression (I)
d(Caverage(x))dx=d(5x−69x2+5x)dx=(9x2+5x)d(5x−6)d−(5x−6)d(9x2+5x)d(9x2+5x)2=(9x2+5x)(5)−(5x−6)(18x+5)(9x2+5x)2=−45x2+108x+30d(Caverage(x))dx=d(5x−69x2+5x)dx=(9x2+5x)d(5x−6)d−(5x−6)d(9x2+5x)d(9x2+5x)2=(9x2+5x)(5)−(5x−6)(18x+5)(9x2+5x)2=−45x2+108x+30
Thus the marginal average cost function is −45x2+108x+30
Archived Solution
You have full access to this solution. To save a copy with all formatting and attachments, use the button below.
For ready-to-submit work, please order a fresh solution below.





