Differential equations
Question (1)

The first three questions involve separable differential equations. 
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This equation is separable because we can conveniently separate the variables x and y to either side of the equal sign:
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We can recall that differentiation of 
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 and so we now integrate both sides to give the general solution to the differential equation:
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                where we have let 
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To find A we now plug in the initial condition: we let x=1 and insist that y=4:
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So we now have our particular solution:
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Once you’ve solved a differential equation, it is usually straightforward to check your answer (if only mentally):
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Question (2)
Following the exact same pattern for question (2):
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    (This is the general solution which you could rearrange for y.)

We can again find the constant of integration by plugging in the initial conditions:
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So, our particular solution is:
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Question (3)
Given the information in the question you have to find the population after 30 years have passed. To summarize our model, let’s decide on some notation:

Let,
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       be the number of years after 1985
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  be the population of Nyobia after x years.

We are told that the rate of increase of the population is 5% per year and each year 40000 people enter, which we can summarize as:
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..which is another separable differential equation - this time with the initial condition:
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Solving this using the same method as before:
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..where 
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Applying the initial condition:
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So…:
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Question (4)
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If we could put this equation into the standard equation for a circle:
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..we would then know the centre (a,b) and the radius, r.

To do this we can just “complete the squares” for x and y:
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Looking at the terms involving x, we can write:


[image: image26.wmf]22

22

22

33

33

22

33

22

xxxx

x

æöæö

-=-+-

ç÷ç÷

èøèø

æöæö

=--

ç÷ç÷

èøèø


Similarly for y:
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Plugging these rearrangements into our equation for the circle gives:
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Comparing this to the standard equation for a circle we gave above, gives us the centre at 
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 and radius = 2.

Question (5)

This time we need the standard equation for an ellipse, which you have probably come across for an ellipse centered at the origin and intersecting the x axis at 
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However, instead of being given a and b, we are given 
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 and the eccentricity, 
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. So the (slightly less familiar) equation we need is:
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This equation  can be derived from the focus/directrix definition of the ellipse.
Plugging in a and e gives:
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Remember, that this ellipse is still centered at the origin. To translate the centre to the point 
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, we must replace x by (x+2)  and replace y by (y-1):
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Question (6)

Using the rule 
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 we can derive:
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Question (7)

To write out the Taylor series, we should first recall its definition:
The Taylor series of 
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    so when 
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We are given 
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, and we need to hence calculate its derivatives at x=0.
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The differentials are beginning to get unpleasant, and we haven’t found many terms! …
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A better approach to find the general term is to consider a similar function such as 
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 for which we can find the power series, and then transform it into 
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Using the familiar geometric series:
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And integrating both sides suggests that:
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Using the substitution 
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 you can find the Taylor series to be:
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Question (8)

We are given the three vectors: 
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..and asked to write c as a linear combination of a and b:
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This is a linear system of 2 equations in two unknowns, and can be solved in many different ways (e.g. using matrix inversion). But because the system is so small we’ll look at the simultaneous pair of equations directly:
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Question (9)

To find the cross product we can use the definition:
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so, for a and b as given in the question:
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Question (10)

The arc length for a curve represented by the parametric equation:
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..is defined by:
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We are given:
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So our definition of L gives:
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    Remember 
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Question (11)

Given,
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We can differentiate partially with respect to x, (treating y as constant) using the quotient rule for differentiation:
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Similarly for y (treating x as constant):         
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Question (12)

Recalling Lagrange’s theorem:
if: 

the minimum or maximum of 
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We are given:
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So, by partially differentiating with respect to x, y and z, we can calculate the gradient vectors to be:
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Using Lagrange’s theorem and the constrain 
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, we have four equations from which we calculate 
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Dividing equations (1)-(3) by 2, squaring and plugging into equation (4) gives:
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These two values for 
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 give us two points in 3D space (using equations (1)-(3) to find x, y and z), which are the extremum values of 
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In the same way you can write down the other point, and determine which of these is a maximum and which minimum by plugging them into f.
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Question (13)

Calculating the double integral:
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Question (14)

We are given:


[image: image95.wmf]236

xyz

++=


This is the equation of a plane, passing through the axes at (6,0,0), (0,3,0) and (0,0,2). If you visualize the space below this plane within the positive octant, you can decide on the limits of integration as:
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Question (15)

From the definitions:
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       (expanding the determinant as in q. 9)
Question 16
Quoting Greens’ theorem
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We should note that the orientation of the curve given in the question is anticlockwise and so correct for Green’s theorem as given above (the region R should be on your left as you walk round the curve C).

Calculating the required partial derivatives:
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We can now evaluate the double integral:
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To simplify this we will write I as:
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…where:
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We need to integrate by parts to find the first two integrals:
Let’s consider 
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Considering 
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So we have now worked out:


[image: image113.wmf]22

2

2

42(1)

22

Iee

e

=-+

=-


Finally, the last integral is straightforward:
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