
1. Problem 1 

 

Let’s look at a general free-body diagram of a car observed in a circular motion on a banked curve, 

moving in a circular motion: 

 

 
The problem states that initially there is no friction, so that we can apply the second Newton’s 

law and project the forces. In the x-direction, we sum the x-components as: 

 

∑𝐹𝑥 = 𝑚𝑎𝑥 

 

We only have the horizontal component of the normal force, which is: 

 
𝑁𝑥
𝑁
= sin𝜃 

∴ 𝑁𝑥 = 𝑁 sin 𝜃 

 

We will also consider the friction force in a general case (even though there is no friction for the 

given scenario, it will help us answer the question): 

 
𝑓𝑥
𝑓
= cos 𝜃 

∴ 𝑓𝑥 = 𝑓 cos𝜃 

 

So that: 

 

𝑁𝑥 + 𝑓𝑥 = 𝑚𝑎𝑥 



∴ 𝑁 sin𝜃 + 𝑓 cos 𝜃 = 𝑚𝑎𝑥 

 

The acceleration in the x-direction corresponds to the centripetal acceleration: 

 

𝑎𝑥 =
𝑣2

𝑟
 

 

Hence: 

 

𝑁 sin𝜃 + 𝑓 cos 𝜃 =
𝑚𝑣2

𝑟
 

 

Now if we project the forces in the y-direction: 

 

∑𝐹𝑦 = 𝑚𝑎𝑦 

 

Finding the components: 

 

(𝑚𝑔)𝑦 = −𝑚𝑔 

𝑓𝑦

𝑓
= −sin𝜃   ∴    𝑓𝑦 = −𝑓 sin𝜃 

𝑁𝑦

𝑁
= cos 𝜃   ∴    𝑁𝑦 = 𝑁 cos 𝜃 

 

We obtain: 

 

𝑁 cos𝜃 − 𝑓 sin𝜃 −𝑚𝑔 = 𝑚𝑎𝑦 

 

No acceleration is present vertically, so that: 

 

𝑎𝑦 = 0 

 

Meaning: 

 

𝑁 cos 𝜃 − 𝑓 sin 𝜃 −𝑚𝑔 = 0 

 

We also know the definition of the friction force as: 

 

𝑓 = 𝜇𝑘𝑁 

 

 

 

 

 



So that we have a set of 3 equations for any general case: 

 

{
 

 𝑁 sin 𝜃 + 𝑓 cos𝜃 =
𝑚𝑣2

𝑟
,

𝑁 cos 𝜃 − 𝑓 sin 𝜃 −𝑚𝑔 = 0,
𝑓 = 𝜇𝑘𝑁

 

 

Utilizing the definition of friction, we rewrite the first two equations as: 

 

𝑁 cos𝜃 − 𝜇𝑘𝑁 sin𝜃 −𝑚𝑔 = 0 

𝑁 sin𝜃 + 𝜇𝑘𝑁 cos𝜃 =
𝑚𝑣2

𝑟
 

 

Solving for the normal force using the first equation: 

 

𝑁(cos𝜃 − 𝜇𝑘 sin 𝜃) = 𝑚𝑔 

𝑁 =
𝑚𝑔

cos 𝜃 − 𝜇𝑘 sin𝜃
 

 

Meaning: 

 

𝑁 sin𝜃 + 𝜇𝑘𝑁 cos𝜃 =
𝑚𝑣2

𝑟
 

𝑚𝑔

cos 𝜃 − 𝜇𝑘 sin𝜃
(sin𝜃 + 𝜇𝑘 cos 𝜃) =

𝑚𝑣2

𝑟
 

 

Here masses cancel out to yield: 

 

𝑣2

𝑟
=
𝑔(sin𝜃 + 𝜇𝑘 cos𝜃)

cos 𝜃 − 𝜇𝑘 sin𝜃
 

 

Solving for the velocity term: 

 

𝑣 = √
𝑔𝑟(sin𝜃 + 𝜇𝑘 cos 𝜃)

cos 𝜃 − 𝜇𝑘 sin𝜃
 

 

Dividing out the radical part by cosine: 

 

𝑣 = √
𝑔𝑟(tan𝜃 + 𝜇𝑘)

1 − 𝜇𝑘 tan 𝜃
 

 

 

 



Initially, we know that there is no friction, so that: 

 

𝑣 = 𝑣𝑜 
𝜇𝑘 = 0 

 

So that: 

 

𝑣𝑜 = √𝑔𝑟 tan𝜃   (1) 

 

This formula holds as long as there is no linear acceleration and only centripetal acceleration is 

present. However, introducing the linear acceleration, the total acceleration of the object 

becomes: 

 

𝑎 = √𝑎𝑡
2 + 𝑎𝑐

2 

 

An increase in velocity leads to an increase in the centripetal force, since: 

 

𝑎𝑐 =
𝑣2

𝑟
 

 

First of all, according to the vector sum, the centripetal acceleration would not be pointing 

towards the center of the circular motion anymore, since we introduce a tangential acceleration 

vector. Since the net force is pointing along the acceleration vector, the direction of the net force 

would deviate from the center of the circular motion. In addition, its magnitude would increase, 

since there is an increase in the centripetal acceleration and the tangential acceleration is 

introduced. The magnitude and the direction of the normal force, as well as the force of gravity, 

would remain the same, since there is no force introduced along the vertical axis. On the other 

hand, to keep the car moving along the track, there must be a friction force of the tires introduced 

to our problem, so that now we can state that a coefficient of kinetic friction is involved in the 

problem. Otherwise, if no friction is present, and there is no force that balances an increase in the 

centripetal force, the car would skid. Looking at the derived formula: 

 

𝑣 = √
𝑔𝑟(tan𝜃 + 𝜇𝑘)

1 − 𝜇𝑘 tan 𝜃
 

 

And we also know that: 

 

𝑣𝑜
2 = 𝑔𝑟 tan𝜃 

 

 

 

 

 



Hence, we will express the variables in terms of the initial velocity: 

 

𝑣 = √
𝑔𝑟 tan 𝜃 + 𝑔𝑟𝜇𝑘
1 − 𝜇𝑘 tan 𝜃

= √
𝑣𝑜
2 +

𝑣𝑜
2

tan 𝜃
𝜇𝑘

1 − 𝜇𝑘 tan 𝜃
= √

𝑣𝑜
2 (1 +

𝜇𝑘
tan 𝜃)

1 − 𝜇𝑘 tan 𝜃
= 𝑣𝑜

√
1 +

𝜇𝑘
tan 𝜃

1 − 𝜇𝑘 tan 𝜃
 

 

We can see from here that the minimum value of velocity is the starting velocity when there is no 

friction involved and the velocity is constant: 

 

𝜇𝑘 = 0  ∴    𝑣 = 𝑣𝑜 

 

Now using some algebra, we will analyze the function 𝑣(𝜇𝑘) assuming that 𝜃 is constant, as it is 

given. Differentiating: 

 

𝑑𝑣

𝑑𝜇𝑘
= 𝑣𝑜 ⋅

1

2√
1 +

𝜇𝑘
tan 𝜃

1 − 𝜇𝑘 tan 𝜃

⋅ (
1 +

𝜇𝑘
tan 𝜃

1 − 𝜇𝑘 tan 𝜃
)

′

 

 

We wish to find the critical points, such that: 

 

(
1 +

𝜇𝑘
tan 𝜃

1 − 𝜇𝑘 tan 𝜃
)

′

= 0 

 

Find the derivative using the quotient rule: 

 

(
1 +

1
tan 𝜃

𝜇𝑘

1 − tan 𝜃 𝜇𝑘
)

′

=
cot3(𝜃) + cot(𝜃)

(𝜇𝑘 − cot(𝜃))
2
= 0 

 

The derivative does not have any solutions, but it doesn’t exist at: 

 

𝜇𝑘 = cot 𝜃 =
1

tan𝜃
 

 

 

 

 

 

 

 

 



However, this makes the limit approach infinity, meaning we would have an infinite velocity. In 

practice, however, the value of 𝜇𝑘 could reach a maximum value of about 1.7, for example. If we 

assume that this is a sensible estimate and knowing that the derived function is a monotonically 

increasing function, the actual maximum velocity limit is limited by the maximum value of the 

coefficient of kinetic friction, and given by the function: 

 

𝑣𝑜
√

1+
𝜇𝑘
tan 𝜃

1 − 𝜇𝑘 tan 𝜃
 

 

We summarize the results and answer the questions directly: 

 

• Acceleration introduces a linear acceleration term into the equation. 

• The net acceleration increases, as now the vector is composed of the linear and the radial 

acceleration terms. 

• The increase in velocity leads to an increase in the radial acceleration term, which must be 

balanced by a newly introduced friction force due to the tires of the car. 

• No change in the magnitude or direction of the normal force and the force of gravity. 

• A newly introduced friction force would be pointing along the horizontal 𝑥-axis shown on the 

free-body diagram. 

• The net force would deviate from its direction towards the center of the circular motion. 

• There would be an upper limit for the velocity based on the equation derived, the maximum 

velocity is achieved at the maximum value of the value of the kinetic friction. 


