<?xml version='1.0' encoding='utf-8' ?> <!-- build 10400.17.0915.2112 --> <workbook original-version='10.4' source-build='10.4.0 (10400.17.0915.2112)' source-platform='win' version='10.4' xmlns:user='http://www.tableausoftware.com/xml/user'> <preferences> <preference name='ui.encoding.shelf.height' value='24' /> <preference name='ui.shelf.height' value='26' /> </preferences> <datasources> <datasource caption='Orders (Superstore 2)' inline='true' name='federated.1632qms1k9dpce1foxool1h7j9kg' version='10.4'> <connection class='federated'> <named-connections> <named-connection caption='Superstore 2' name='excel-direct.1gm9qwb09rlv1i1cky0b1027dcu3'> <connection class='excel-direct' cleaning='no' compat='no' dataRefreshTime='' filename='C:/Users/RAJAN/Downloads/Superstore 2.xlsx' interpretationMode='0' password='' server='' validate='no' /> </named-connection> </named-connections> <relation connection='excel-direct.1gm9qwb09rlv1i1cky0b1027dcu3' name='Orders' table='[Orders$]' type='table'> <columns gridOrigin='A1:Z9427:no:A1:Z9427:0' header='yes' outcome='6'> <column datatype='string' name='Category' ordinal='0' /> <column datatype='string' name='City' ordinal='1' /> <column datatype='string' name='Container' ordinal='2' /> <column datatype='integer' name='Customer ID' ordinal='3' /> <column datatype='string' name='Customer Name' ordinal='4' /> <column datatype='string' name='Customer Segment' ordinal='5' /> <column datatype='string' name='Department' ordinal='6' /> <column datatype='real' name='Discount' ordinal='7' /> <column datatype='integer' name='Item ID' ordinal='8' /> <column datatype='string' name='Item' ordinal='9' /> <column datatype='integer' name='Number of Records' ordinal='10' /> <column datatype='date' name='Order Date' ordinal='11' /> <column datatype='integer' name='Order ID' ordinal='12' /> <column datatype='string' name='Order Priority' ordinal='13' /> <column datatype='integer' name='Order Quantity' ordinal='14' /> <column datatype='integer' name='Postal Code' ordinal='15' /> <column datatype='real' name='Product Base Margin' ordinal='16' /> <column datatype='integer' name='Profit' ordinal='17' /> <column datatype='string' name='Region' ordinal='18' /> <column datatype='date' name='Row ID' ordinal='19' /> <column datatype='integer' name='Sales' ordinal='20' /> <column datatype='date' name='Ship Date' ordinal='21' /> <column datatype='string' name='Ship Mode' ordinal='22' /> <column datatype='integer' name='Shipping Cost' ordinal='23' /> <column datatype='string' name='State' ordinal='24' /> <column datatype='integer' name='Unit Price' ordinal='25' /> </columns> </relation> <metadata-records> <metadata-record class='column'> <remote-name>Category</remote-name> <remote-type>130</remote-type> <local-name>[Category]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Category</remote-alias> <ordinal>0</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>City</remote-name> <remote-type>130</remote-type> <local-name>[City]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>City</remote-alias> <ordinal>1</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Container</remote-name> <remote-type>130</remote-type> <local-name>[Container]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Container</remote-alias> <ordinal>2</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Customer ID</remote-name> <remote-type>20</remote-type> <local-name>[Customer ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Customer ID</remote-alias> <ordinal>3</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Customer Name</remote-name> <remote-type>130</remote-type> <local-name>[Customer Name]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Customer Name</remote-alias> <ordinal>4</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Customer Segment</remote-name> <remote-type>130</remote-type> <local-name>[Customer Segment]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Customer Segment</remote-alias> <ordinal>5</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Department</remote-name> <remote-type>130</remote-type> <local-name>[Department]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Department</remote-alias> <ordinal>6</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Discount</remote-name> <remote-type>5</remote-type> <local-name>[Discount]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Discount</remote-alias> <ordinal>7</ordinal> <local-type>real</local-type> <aggregation>Sum</aggregation> <precision>15</precision> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"R8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Item ID</remote-name> <remote-type>20</remote-type> <local-name>[Item ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Item ID</remote-alias> <ordinal>8</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Item</remote-name> <remote-type>130</remote-type> <local-name>[Item]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Item</remote-alias> <ordinal>9</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Number of Records</remote-name> <remote-type>20</remote-type> <local-name>[Number of Records]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Number of Records</remote-alias> <ordinal>10</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order Date</remote-name> <remote-type>7</remote-type> <local-name>[Order Date]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order Date</remote-alias> <ordinal>11</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order ID</remote-name> <remote-type>20</remote-type> <local-name>[Order ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order ID</remote-alias> <ordinal>12</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order Priority</remote-name> <remote-type>130</remote-type> <local-name>[Order Priority]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order Priority</remote-alias> <ordinal>13</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order Quantity</remote-name> <remote-type>20</remote-type> <local-name>[Order Quantity]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order Quantity</remote-alias> <ordinal>14</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Postal Code</remote-name> <remote-type>20</remote-type> <local-name>[Postal Code]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Postal Code</remote-alias> <ordinal>15</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Product Base Margin</remote-name> <remote-type>5</remote-type> <local-name>[Product Base Margin]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Product Base Margin</remote-alias> <ordinal>16</ordinal> <local-type>real</local-type> <aggregation>Sum</aggregation> <precision>15</precision> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"R8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Profit</remote-name> <remote-type>20</remote-type> <local-name>[Profit]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Profit</remote-alias> <ordinal>17</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Region</remote-name> <remote-type>130</remote-type> <local-name>[Region]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Region</remote-alias> <ordinal>18</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Row ID</remote-name> <remote-type>7</remote-type> <local-name>[Row ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Row ID</remote-alias> <ordinal>19</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Sales</remote-name> <remote-type>20</remote-type> <local-name>[Sales]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Sales</remote-alias> <ordinal>20</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Ship Date</remote-name> <remote-type>7</remote-type> <local-name>[Ship Date]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Ship Date</remote-alias> <ordinal>21</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Ship Mode</remote-name> <remote-type>130</remote-type> <local-name>[Ship Mode]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Ship Mode</remote-alias> <ordinal>22</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Shipping Cost</remote-name> <remote-type>20</remote-type> <local-name>[Shipping Cost]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Shipping Cost</remote-alias> <ordinal>23</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>State</remote-name> <remote-type>130</remote-type> <local-name>[State]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>State</remote-alias> <ordinal>24</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Unit Price</remote-name> <remote-type>20</remote-type> <local-name>[Unit Price]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Unit Price</remote-alias> <ordinal>25</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='capability'> <remote-name /> <remote-type>0</remote-type> <parent-name>[Orders]</parent-name> <remote-alias /> <aggregation>Count</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='integer' name='context'>0</attribute> <attribute datatype='string' name='gridOrigin'>"A1:Z9427:no:A1:Z9427:0"</attribute> <attribute datatype='boolean' name='header'>true</attribute> <attribute datatype='integer' name='outcome'>6</attribute> </attributes> </metadata-record> </metadata-records> </connection> <column datatype='string' name='[City]' role='dimension' semantic-role='[City].[Name]' type='nominal' /> <column datatype='integer' name='[Customer ID]' role='dimension' type='ordinal' /> <column datatype='string' name='[Customer Segment]' role='dimension' type='nominal' /> <column datatype='integer' name='[Item ID]' role='dimension' type='ordinal' /> <column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec' /> <column datatype='integer' name='[Order ID]' role='dimension' type='ordinal' /> <column datatype='integer' default-format='*00000' name='[Postal Code]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' /> <column datatype='string' name='[State]' role='dimension' semantic-role='[State].[Name]' type='nominal' /> <column-instance column='[Customer Segment]' derivation='None' name='[none:Customer Segment:nk]' pivot='key' type='nominal' /> <layout dim-ordering='alphabetic' dim-percentage='0.624579' measure-ordering='alphabetic' measure-percentage='0.375421' show-structure='true' /> <style> <style-rule element='mark'> <encoding attr='color' field='[none:Customer Segment:nk]' type='palette'> <map to='#4e79a7'> <bucket>"Consumer"</bucket> </map> <map to='#76b7b2'> <bucket>"Small Business"</bucket> </map> <map to='#e15759'> <bucket>"Home Office"</bucket> </map> <map to='#f28e2b'> <bucket>"Corporate"</bucket> </map> </encoding> </style-rule> </style> <semantic-values> <semantic-value key='[Country].[Name]' value='"United States"' /> </semantic-values> </datasource> <datasource caption='Orders+ (Superstore 2)' inline='true' name='federated.0q9hf1i18nuchx1bfritc1nke7i9' version='10.4'> <connection class='federated'> <named-connections> <named-connection caption='Superstore 2' name='excel-direct.07zl2so0hzk83h10cpiw51nxwzj4'> <connection class='excel-direct' cleaning='no' compat='no' dataRefreshTime='' filename='C:/Users/RAJAN/Downloads/Superstore 2.xlsx' interpretationMode='0' password='' server='' validate='no' /> </named-connection> </named-connections> <relation join='inner' type='join'> <clause type='join'> <expression op='='> <expression op='[Orders].[Order ID]' /> <expression op='[Returns].[Order ID]' /> </expression> </clause> <relation connection='excel-direct.07zl2so0hzk83h10cpiw51nxwzj4' name='Orders' table='[Orders$]' type='table'> <columns gridOrigin='A1:Z9427:no:A1:Z9427:0' header='yes' outcome='6'> <column datatype='string' name='Category' ordinal='0' /> <column datatype='string' name='City' ordinal='1' /> <column datatype='string' name='Container' ordinal='2' /> <column datatype='integer' name='Customer ID' ordinal='3' /> <column datatype='string' name='Customer Name' ordinal='4' /> <column datatype='string' name='Customer Segment' ordinal='5' /> <column datatype='string' name='Department' ordinal='6' /> <column datatype='real' name='Discount' ordinal='7' /> <column datatype='integer' name='Item ID' ordinal='8' /> <column datatype='string' name='Item' ordinal='9' /> <column datatype='integer' name='Number of Records' ordinal='10' /> <column datatype='date' name='Order Date' ordinal='11' /> <column datatype='integer' name='Order ID' ordinal='12' /> <column datatype='string' name='Order Priority' ordinal='13' /> <column datatype='integer' name='Order Quantity' ordinal='14' /> <column datatype='integer' name='Postal Code' ordinal='15' /> <column datatype='real' name='Product Base Margin' ordinal='16' /> <column datatype='integer' name='Profit' ordinal='17' /> <column datatype='string' name='Region' ordinal='18' /> <column datatype='date' name='Row ID' ordinal='19' /> <column datatype='integer' name='Sales' ordinal='20' /> <column datatype='date' name='Ship Date' ordinal='21' /> <column datatype='string' name='Ship Mode' ordinal='22' /> <column datatype='integer' name='Shipping Cost' ordinal='23' /> <column datatype='string' name='State' ordinal='24' /> <column datatype='integer' name='Unit Price' ordinal='25' /> </columns> </relation> <relation connection='excel-direct.07zl2so0hzk83h10cpiw51nxwzj4' name='Returns' table='[Returns$]' type='table'> <columns gridOrigin='A1:C618:no:A1:C618:0' header='yes' outcome='6'> <column datatype='integer' name='Order ID' ordinal='0' /> <column datatype='date' name='Return Date' ordinal='1' /> <column datatype='string' name='Return Reason' ordinal='2' /> </columns> </relation> </relation> <cols> <map key='[Category]' value='[Orders].[Category]' /> <map key='[City]' value='[Orders].[City]' /> <map key='[Container]' value='[Orders].[Container]' /> <map key='[Customer ID]' value='[Orders].[Customer ID]' /> <map key='[Customer Name]' value='[Orders].[Customer Name]' /> <map key='[Customer Segment]' value='[Orders].[Customer Segment]' /> <map key='[Department]' value='[Orders].[Department]' /> <map key='[Discount]' value='[Orders].[Discount]' /> <map key='[Item ID]' value='[Orders].[Item ID]' /> <map key='[Item]' value='[Orders].[Item]' /> <map key='[Number of Records]' value='[Orders].[Number of Records]' /> <map key='[Order Date]' value='[Orders].[Order Date]' /> <map key='[Order ID (Returns)]' value='[Returns].[Order ID]' /> <map key='[Order ID]' value='[Orders].[Order ID]' /> <map key='[Order Priority]' value='[Orders].[Order Priority]' /> <map key='[Order Quantity]' value='[Orders].[Order Quantity]' /> <map key='[Postal Code]' value='[Orders].[Postal Code]' /> <map key='[Product Base Margin]' value='[Orders].[Product Base Margin]' /> <map key='[Profit]' value='[Orders].[Profit]' /> <map key='[Region]' value='[Orders].[Region]' /> <map key='[Return Date]' value='[Returns].[Return Date]' /> <map key='[Return Reason]' value='[Returns].[Return Reason]' /> <map key='[Row ID]' value='[Orders].[Row ID]' /> <map key='[Sales]' value='[Orders].[Sales]' /> <map key='[Ship Date]' value='[Orders].[Ship Date]' /> <map key='[Ship Mode]' value='[Orders].[Ship Mode]' /> <map key='[Shipping Cost]' value='[Orders].[Shipping Cost]' /> <map key='[State]' value='[Orders].[State]' /> <map key='[Unit Price]' value='[Orders].[Unit Price]' /> </cols> <metadata-records> <metadata-record class='column'> <remote-name>Category</remote-name> <remote-type>130</remote-type> <local-name>[Category]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Category</remote-alias> <ordinal>0</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>City</remote-name> <remote-type>130</remote-type> <local-name>[City]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>City</remote-alias> <ordinal>1</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Container</remote-name> <remote-type>130</remote-type> <local-name>[Container]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Container</remote-alias> <ordinal>2</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Customer ID</remote-name> <remote-type>20</remote-type> <local-name>[Customer ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Customer ID</remote-alias> <ordinal>3</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Customer Name</remote-name> <remote-type>130</remote-type> <local-name>[Customer Name]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Customer Name</remote-alias> <ordinal>4</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Customer Segment</remote-name> <remote-type>130</remote-type> <local-name>[Customer Segment]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Customer Segment</remote-alias> <ordinal>5</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Department</remote-name> <remote-type>130</remote-type> <local-name>[Department]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Department</remote-alias> <ordinal>6</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Discount</remote-name> <remote-type>5</remote-type> <local-name>[Discount]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Discount</remote-alias> <ordinal>7</ordinal> <local-type>real</local-type> <aggregation>Sum</aggregation> <precision>15</precision> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"R8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Item ID</remote-name> <remote-type>20</remote-type> <local-name>[Item ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Item ID</remote-alias> <ordinal>8</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Item</remote-name> <remote-type>130</remote-type> <local-name>[Item]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Item</remote-alias> <ordinal>9</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Number of Records</remote-name> <remote-type>20</remote-type> <local-name>[Number of Records]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Number of Records</remote-alias> <ordinal>10</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order Date</remote-name> <remote-type>7</remote-type> <local-name>[Order Date]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order Date</remote-alias> <ordinal>11</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order ID</remote-name> <remote-type>20</remote-type> <local-name>[Order ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order ID</remote-alias> <ordinal>12</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order Priority</remote-name> <remote-type>130</remote-type> <local-name>[Order Priority]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order Priority</remote-alias> <ordinal>13</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order Quantity</remote-name> <remote-type>20</remote-type> <local-name>[Order Quantity]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Order Quantity</remote-alias> <ordinal>14</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Postal Code</remote-name> <remote-type>20</remote-type> <local-name>[Postal Code]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Postal Code</remote-alias> <ordinal>15</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Product Base Margin</remote-name> <remote-type>5</remote-type> <local-name>[Product Base Margin]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Product Base Margin</remote-alias> <ordinal>16</ordinal> <local-type>real</local-type> <aggregation>Sum</aggregation> <precision>15</precision> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"R8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Profit</remote-name> <remote-type>20</remote-type> <local-name>[Profit]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Profit</remote-alias> <ordinal>17</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Region</remote-name> <remote-type>130</remote-type> <local-name>[Region]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Region</remote-alias> <ordinal>18</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Row ID</remote-name> <remote-type>7</remote-type> <local-name>[Row ID]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Row ID</remote-alias> <ordinal>19</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Sales</remote-name> <remote-type>20</remote-type> <local-name>[Sales]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Sales</remote-alias> <ordinal>20</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Ship Date</remote-name> <remote-type>7</remote-type> <local-name>[Ship Date]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Ship Date</remote-alias> <ordinal>21</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Ship Mode</remote-name> <remote-type>130</remote-type> <local-name>[Ship Mode]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Ship Mode</remote-alias> <ordinal>22</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Shipping Cost</remote-name> <remote-type>20</remote-type> <local-name>[Shipping Cost]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Shipping Cost</remote-alias> <ordinal>23</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>State</remote-name> <remote-type>130</remote-type> <local-name>[State]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>State</remote-alias> <ordinal>24</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Unit Price</remote-name> <remote-type>20</remote-type> <local-name>[Unit Price]</local-name> <parent-name>[Orders]</parent-name> <remote-alias>Unit Price</remote-alias> <ordinal>25</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='capability'> <remote-name /> <remote-type>0</remote-type> <parent-name>[Orders]</parent-name> <remote-alias /> <aggregation>Count</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='integer' name='context'>0</attribute> <attribute datatype='string' name='gridOrigin'>"A1:Z9427:no:A1:Z9427:0"</attribute> <attribute datatype='boolean' name='header'>true</attribute> <attribute datatype='integer' name='outcome'>6</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Order ID</remote-name> <remote-type>20</remote-type> <local-name>[Order ID (Returns)]</local-name> <parent-name>[Returns]</parent-name> <remote-alias>Order ID</remote-alias> <ordinal>26</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"I8"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Return Date</remote-name> <remote-type>7</remote-type> <local-name>[Return Date]</local-name> <parent-name>[Returns]</parent-name> <remote-alias>Return Date</remote-alias> <ordinal>27</ordinal> <local-type>date</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='DebugRemoteType'>"DATE"</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>Return Reason</remote-name> <remote-type>130</remote-type> <local-name>[Return Reason]</local-name> <parent-name>[Returns]</parent-name> <remote-alias>Return Reason</remote-alias> <ordinal>28</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <contains-null>true</contains-null> <collation flag='1' name='LEN_RUS_S2' /> <attributes> <attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute> </attributes> </metadata-record> <metadata-record class='capability'> <remote-name /> <remote-type>0</remote-type> <parent-name>[Returns]</parent-name> <remote-alias /> <aggregation>Count</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='integer' name='context'>0</attribute> <attribute datatype='string' name='gridOrigin'>"A1:C618:no:A1:C618:0"</attribute> <attribute datatype='boolean' name='header'>true</attribute> <attribute datatype='integer' name='outcome'>6</attribute> </attributes> </metadata-record> </metadata-records> </connection> <column datatype='string' name='[City]' role='dimension' semantic-role='[City].[Name]' type='nominal' /> <column datatype='integer' name='[Customer ID]' role='dimension' type='ordinal' /> <column datatype='string' name='[Customer Segment]' role='dimension' type='nominal' /> <column datatype='integer' name='[Item ID]' role='dimension' type='ordinal' /> <column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec' /> <column datatype='integer' name='[Order ID (Returns)]' role='dimension' type='ordinal' /> <column datatype='integer' name='[Order ID]' role='dimension' type='ordinal' /> <column datatype='integer' default-format='*00000' name='[Postal Code]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' /> <column datatype='string' name='[State]' role='dimension' semantic-role='[State].[Name]' type='nominal' /> <column-instance column='[Customer Segment]' derivation='None' name='[none:Customer Segment:nk]' pivot='key' type='nominal' /> <layout dim-ordering='alphabetic' dim-percentage='0.612795' measure-ordering='alphabetic' measure-percentage='0.387205' show-structure='true' /> <style> <style-rule element='mark'> <encoding attr='color' field='[none:Customer Segment:nk]' type='palette'> <map to='#4e79a7'> <bucket>"Consumer"</bucket> </map> <map to='#76b7b2'> <bucket>"Small Business"</bucket> </map> <map to='#e15759'> <bucket>"Home Office"</bucket> </map> <map to='#f28e2b'> <bucket>"Corporate"</bucket> </map> </encoding> </style-rule> </style> <semantic-values> <semantic-value key='[Country].[Name]' value='"United States"' /> </semantic-values> </datasource> </datasources> <mapsources> <mapsource name='Tableau' /> </mapsources> <worksheets> <worksheet name='QN 1'> <layout-options> <title> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#4e79a7' fontsize='8'>Question 1</run> </formatted-text> </title> </layout-options> <table> <view> <datasources> <datasource caption='Orders (Superstore 2)' name='federated.1632qms1k9dpce1foxool1h7j9kg' /> </datasources> <datasource-dependencies datasource='federated.1632qms1k9dpce1foxool1h7j9kg'> <column datatype='string' name='[Category]' role='dimension' type='nominal' /> <column datatype='string' name='[Customer Segment]' role='dimension' type='nominal' /> <column datatype='integer' name='[Profit]' role='measure' type='quantitative' /> <column-instance column='[Category]' derivation='None' name='[none:Category:nk]' pivot='key' type='nominal' /> <column-instance column='[Customer Segment]' derivation='None' name='[none:Customer Segment:nk]' pivot='key' type='nominal' /> <column-instance column='[Profit]' derivation='Sum' name='[sum:Profit:qk]' pivot='key' type='quantitative' /> </datasource-dependencies> <aggregation value='true' /> </view> <style> <style-rule element='axis'> <format attr='height' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' value='40' /> </style-rule> <style-rule element='label'> <format attr='font-weight' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' value='bold' /> <format attr='color' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' value='#000000' /> <format attr='font-weight' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Category:nk]' value='bold' /> <format attr='color' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Category:nk]' value='#000000' /> <format attr='color' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]' value='#000000' /> <format attr='font-weight' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]' value='bold' /> </style-rule> <style-rule element='legend-title-text'> <format attr='color' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]' value='Customer Segment'> <formatted-text> <run bold='true' fontalignment='1'>Customer Segment</run> </formatted-text> </format> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <encodings> <color column='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]' /> </encodings> </pane> </panes> <rows>([federated.1632qms1k9dpce1foxool1h7j9kg].[none:Category:nk] / [federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk])</rows> <cols>[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]</cols> </table> </worksheet> <worksheet name='QN 2'> <layout-options> <title> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#59a14f' fontsize='10'>Question 2</run> </formatted-text> </title> </layout-options> <table> <view> <datasources> <datasource caption='Orders+ (Superstore 2)' name='federated.0q9hf1i18nuchx1bfritc1nke7i9' /> </datasources> <datasource-dependencies datasource='federated.0q9hf1i18nuchx1bfritc1nke7i9'> <column datatype='string' name='[Category]' role='dimension' type='nominal' /> <column datatype='string' name='[Customer Segment]' role='dimension' type='nominal' /> <column datatype='integer' name='[Profit]' role='measure' type='quantitative' /> <column-instance column='[Category]' derivation='None' name='[none:Category:nk]' pivot='key' type='nominal' /> <column-instance column='[Customer Segment]' derivation='None' name='[none:Customer Segment:nk]' pivot='key' type='nominal' /> <column-instance column='[Profit]' derivation='Sum' name='[sum:Profit:qk]' pivot='key' type='quantitative' /> </datasource-dependencies> <sort class='alphabetic' column='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' direction='ASC' /> <aggregation value='true' /> </view> <style> <style-rule element='axis'> <format attr='height' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Profit:qk]' value='40' /> </style-rule> <style-rule element='label'> <format attr='font-weight' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Profit:qk]' value='bold' /> <format attr='color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Profit:qk]' value='#000000' /> <format attr='font-weight' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Category:nk]' value='bold' /> <format attr='color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Category:nk]' value='#000000' /> <format attr='font-weight' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' value='bold' /> <format attr='color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' value='#000000' /> </style-rule> <style-rule element='legend-title-text'> <format attr='color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' value='Customer Segment'> <formatted-text> <run bold='true' fontalignment='1'>Customer Segment</run> </formatted-text> </format> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <encodings> <color column='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' /> </encodings> </pane> </panes> <rows>([federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Category:nk] / [federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk])</rows> <cols>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Profit:qk]</cols> </table> </worksheet> <worksheet name='QN 3'> <layout-options> <title> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#e15759' fontsize='8'>Question 3</run> </formatted-text> </title> </layout-options> <table> <view> <datasources> <datasource caption='Orders+ (Superstore 2)' name='federated.0q9hf1i18nuchx1bfritc1nke7i9' /> </datasources> <datasource-dependencies datasource='federated.0q9hf1i18nuchx1bfritc1nke7i9'> <column datatype='date' name='[Order Date]' role='dimension' type='ordinal' /> <column datatype='string' name='[Region]' role='dimension' type='nominal' /> <column datatype='string' name='[Ship Mode]' role='dimension' type='nominal' /> <column datatype='integer' name='[Shipping Cost]' role='measure' type='quantitative' /> <column-instance column='[Region]' derivation='None' name='[none:Region:nk]' pivot='key' type='nominal' /> <column-instance column='[Ship Mode]' derivation='None' name='[none:Ship Mode:nk]' pivot='key' type='nominal' /> <column-instance column='[Shipping Cost]' derivation='Sum' name='[sum:Shipping Cost:qk]' pivot='key' type='quantitative' /> <column-instance column='[Order Date]' derivation='Quarter-Trunc' name='[tqr:Order Date:qk]' pivot='key' type='quantitative' /> </datasource-dependencies> <filter class='categorical' column='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Ship Mode:nk]'> <groupfilter function='union' user:ui-domain='database' user:ui-enumeration='inclusive' user:ui-marker='enumerate'> <groupfilter function='member' level='[none:Ship Mode:nk]' member='"Express Air"' /> <groupfilter function='member' level='[none:Ship Mode:nk]' member='"Regular Air"' /> </groupfilter> </filter> <slices> <column>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Ship Mode:nk]</column> </slices> <aggregation value='true' /> </view> <style> <style-rule element='axis'> <encoding attr='space' class='0' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' field-type='quantitative' major-origin='#2015-11-16 12:00:00#' major-spacing='1' major-units='quarters' scope='cols' type='space' /> <format attr='subtitle' class='0' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' scope='cols' value='' /> <format attr='auto-subtitle' class='0' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' scope='cols' value='true' /> <format attr='height' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' value='38' /> <format attr='width' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Shipping Cost:qk]' value='56' /> </style-rule> <style-rule element='header'> <format attr='background-color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Shipping Cost:qk]' value='#ffffff' /> </style-rule> <style-rule element='label'> <format attr='font-weight' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' value='bold' /> <format attr='color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' value='#000000' /> <format attr='font-weight' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Shipping Cost:qk]' value='bold' /> <format attr='color' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Shipping Cost:qk]' value='#000000' /> <format attr='font-size' field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]' value='8' /> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <mark-sizing mark-sizing-setting='marks-scaling-off' /> <encodings> <color column='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Region:nk]' /> <text column='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Region:nk]' /> </encodings> <style> <style-rule element='datalabel'> <format attr='color-mode' value='match' /> <format attr='font-weight' value='bold' /> </style-rule> <style-rule element='mark'> <format attr='size' value='0.93353593349456787' /> <format attr='mark-labels-show' value='true' /> <format attr='mark-labels-cull' value='true' /> </style-rule> </style> </pane> </panes> <rows>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[sum:Shipping Cost:qk]</rows> <cols>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]</cols> </table> </worksheet> <worksheet name='QN 4'> <layout-options> <title> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#79706e' fontsize='8'>Question 4</run> </formatted-text> </title> </layout-options> <table> <view> <datasources> <datasource caption='Orders (Superstore 2)' name='federated.1632qms1k9dpce1foxool1h7j9kg' /> </datasources> <mapsources> <mapsource name='Tableau' /> </mapsources> <datasource-dependencies datasource='federated.1632qms1k9dpce1foxool1h7j9kg'> <column datatype='string' name='[City]' role='dimension' semantic-role='[City].[Name]' type='nominal' /> <column datatype='real' name='[Discount]' role='measure' type='quantitative' /> <column datatype='integer' name='[Profit]' role='measure' type='quantitative' /> <column-instance column='[City]' derivation='None' name='[none:City:nk]' pivot='key' type='nominal' /> <column-instance column='[Discount]' derivation='Sum' name='[sum:Discount:qk]' pivot='key' type='quantitative' /> <column-instance column='[Profit]' derivation='Sum' name='[sum:Profit:qk]' pivot='key' type='quantitative' /> </datasource-dependencies> <filter class='quantitative' column='[federated.1632qms1k9dpce1foxool1h7j9kg].[Latitude (generated)]' included-values='non-null' /> <filter class='quantitative' column='[federated.1632qms1k9dpce1foxool1h7j9kg].[Longitude (generated)]' included-values='non-null' /> <slices> <column>[federated.1632qms1k9dpce1foxool1h7j9kg].[Latitude (generated)]</column> <column>[federated.1632qms1k9dpce1foxool1h7j9kg].[Longitude (generated)]</column> </slices> <aggregation value='true' /> </view> <style> <style-rule element='axis'> <encoding attr='space' class='0' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[Longitude (generated)]' field-type='quantitative' max='-5398333.6592960507' min='-16372824.248356607' projection='EPSG:3857' range-type='fixed' scope='cols' type='space' /> <encoding attr='space' class='0' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[Latitude (generated)]' field-type='quantitative' max='6385057.8389908141' min='3320110.0168207493' projection='EPSG:3857' range-type='fixed' scope='rows' type='space' /> </style-rule> <style-rule element='mark'> <encoding attr='color' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' max='46595' num-steps='5' symmetric='false' type='custom-interpolated'> <color-palette custom='true' name='' type='ordered-diverging'> <color>#ff0000</color> <color>#fb1616</color> <color>#f82d2d</color> <color>#f44242</color> <color>#f15757</color> <color>#ed6c6c</color> <color>#ea7f7f</color> <color>#e69292</color> <color>#e3a5a5</color> <color>#dfb7b7</color> <color>#dcc8c8</color> <color>#d9d9d9</color> <color>#c1d4c1</color> <color>#aad0aa</color> <color>#94cc94</color> <color>#7fc77f</color> <color>#6ac36a</color> <color>#56bf56</color> <color>#44bb44</color> <color>#31b631</color> <color>#20b220</color> <color>#0fae0f</color> <color>#00aa00</color> </color-palette> </encoding> <encoding attr='size' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Discount:qk]' field-type='quantitative' max='22.350000000000001' max-size='1' min-size='0.0261203' type='rangesize' /> </style-rule> <style-rule element='table'> <format attr='omit-on-special' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:City:nk]' value='false' /> <format attr='break-on-special' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:City:nk]' value='false' /> <format attr='show-null-value-warning' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:City:nk]' value='false' /> </style-rule> <style-rule element='map-layer'> <format attr='enabled' id='tab_base' value='true' /> <format attr='enabled' id='um_lcover' value='true' /> <format attr='enabled' id='tab_coastline' value='false' /> <format attr='enabled' id='pp2_line' value='false' /> <format attr='enabled' id='light_adm0_bnd' value='false' /> <format attr='enabled' id='light_adm0_lbl' value='false' /> <format attr='enabled' id='um_adm0_bnd' value='true' /> <format attr='enabled' id='um_adm0_lbl' value='true' /> <format attr='enabled' id='light_pp2_statebounds' value='false' /> <format attr='enabled' id='light_pp2_statelabels' value='false' /> <format attr='enabled' id='pp2_adminlabels' value='false' /> <format attr='enabled' id='pp2_statebounds' value='true' /> <format attr='enabled' id='pp2_statelabels' value='true' /> <format attr='enabled' id='countybounds' value='false' /> <format attr='enabled' id='countylabels' value='false' /> <format attr='enabled' id='zipbounds' value='false' /> <format attr='enabled' id='ziplabels' value='false' /> <format attr='enabled' id='tab_areabounds' value='false' /> <format attr='enabled' id='tab_arealabels' value='false' /> <format attr='enabled' id='tab_msabounds' value='false' /> <format attr='enabled' id='tab_msalabels' value='false' /> </style-rule> <style-rule element='map'> <format attr='washout' value='0.0' /> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <mark-sizing mark-sizing-setting='marks-scaling-off' /> <encodings> <color column='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' /> <size column='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Discount:qk]' /> <lod column='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:City:nk]' /> </encodings> <style> <style-rule element='mark'> <format attr='size' value='2.5083334445953369' /> <format attr='has-halo' value='false' /> <format attr='has-stroke' value='true' /> <format attr='stroke-color' value='#8cd17d' /> </style-rule> </style> </pane> </panes> <rows>[federated.1632qms1k9dpce1foxool1h7j9kg].[Latitude (generated)]</rows> <cols>[federated.1632qms1k9dpce1foxool1h7j9kg].[Longitude (generated)]</cols> </table> </worksheet> <worksheet name='QN 5'> <layout-options> <title> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#76b7b2' fontsize='8'>Question 5</run> </formatted-text> </title> </layout-options> <table> <view> <datasources> <datasource caption='Orders (Superstore 2)' name='federated.1632qms1k9dpce1foxool1h7j9kg' /> </datasources> <mapsources> <mapsource name='Tableau' /> </mapsources> <datasource-dependencies datasource='federated.1632qms1k9dpce1foxool1h7j9kg'> <column datatype='integer' name='[Order Quantity]' role='measure' type='quantitative' /> <column datatype='integer' name='[Shipping Cost]' role='measure' type='quantitative' /> <column datatype='string' name='[State]' role='dimension' semantic-role='[State].[Name]' type='nominal' /> <column-instance column='[State]' derivation='None' name='[none:State:nk]' pivot='key' type='nominal' /> <column-instance column='[Order Quantity]' derivation='Sum' name='[sum:Order Quantity:qk]' pivot='key' type='quantitative' /> <column-instance column='[Shipping Cost]' derivation='Sum' name='[sum:Shipping Cost:qk]' pivot='key' type='quantitative' /> </datasource-dependencies> <aggregation value='true' /> </view> <style> <style-rule element='axis'> <encoding attr='space' class='0' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[Longitude (generated)]' field-type='quantitative' max='-5482047.4126943741' min='-16498862.735264109' projection='EPSG:3857' range-type='fixed' scope='cols' type='space' /> <encoding attr='space' class='0' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[Latitude (generated)]' field-type='quantitative' max='6311489.360306005' min='3233466.2326727812' projection='EPSG:3857' range-type='fixed' scope='rows' type='space' /> </style-rule> <style-rule element='mark'> <encoding attr='color' field='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Shipping Cost:qk]' reverse='true' type='custom-interpolated'> <color-palette custom='true' name='' type='ordered-diverging'> <color>#be682b</color> <color>#c27945</color> <color>#c78a60</color> <color>#cb9d7c</color> <color>#d0b09a</color> <color>#d4c4b9</color> <color>#d9d9d9</color> <color>#b8c4d0</color> <color>#99b1c7</color> <color>#7d9fbf</color> <color>#628db6</color> <color>#497dad</color> <color>#336ea5</color> </color-palette> </encoding> </style-rule> <style-rule element='map-layer'> <format attr='enabled' id='tab_base' value='true' /> <format attr='enabled' id='um_lcover' value='true' /> <format attr='enabled' id='tab_coastline' value='false' /> <format attr='enabled' id='pp2_line' value='false' /> <format attr='enabled' id='light_adm0_bnd' value='false' /> <format attr='enabled' id='light_adm0_lbl' value='false' /> <format attr='enabled' id='um_adm0_bnd' value='true' /> <format attr='enabled' id='um_adm0_lbl' value='true' /> <format attr='enabled' id='light_pp2_statebounds' value='false' /> <format attr='enabled' id='light_pp2_statelabels' value='false' /> <format attr='enabled' id='pp2_adminlabels' value='false' /> <format attr='enabled' id='pp2_statebounds' value='true' /> <format attr='enabled' id='pp2_statelabels' value='true' /> <format attr='enabled' id='countybounds' value='false' /> <format attr='enabled' id='countylabels' value='false' /> <format attr='enabled' id='zipbounds' value='false' /> <format attr='enabled' id='ziplabels' value='false' /> <format attr='enabled' id='tab_areabounds' value='false' /> <format attr='enabled' id='tab_arealabels' value='false' /> <format attr='enabled' id='tab_msabounds' value='false' /> <format attr='enabled' id='tab_msalabels' value='false' /> </style-rule> <style-rule element='map'> <format attr='washout' value='0.0' /> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Multipolygon' /> <encodings> <color column='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Shipping Cost:qk]' /> <text column='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Order Quantity:qk]' /> <lod column='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:State:nk]' /> <geometry column='[federated.1632qms1k9dpce1foxool1h7j9kg].[Geometry (generated)]' /> </encodings> <customized-label> <formatted-text> <run bold='true' fontcolor='#ffffff' fontsize='8'><</run> <run bold='true' fontcolor='#ffffff' fontsize='8'>[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Order Quantity:qk]</run> <run bold='true' fontcolor='#ffffff' fontsize='8'>></run> </formatted-text> </customized-label> <style> <style-rule element='mark'> <format attr='mark-labels-show' value='true' /> <format attr='mark-labels-cull' value='true' /> </style-rule> </style> </pane> </panes> <rows>[federated.1632qms1k9dpce1foxool1h7j9kg].[Latitude (generated)]</rows> <cols>[federated.1632qms1k9dpce1foxool1h7j9kg].[Longitude (generated)]</cols> </table> </worksheet> </worksheets> <dashboards> <dashboard name='Dashboard 1'> <style /> <size maxheight='768' maxwidth='1366' minheight='768' minwidth='1366' preset-index='0' sizing-mode='fixed' /> <zones use-insets='false'> <zone h='100000' id='2' type='layout-basic' w='100000' x='0' y='0'> <zone h='97916' id='21' param='horz' type='layout-flow' w='98828' x='586' y='1042'> <zone h='97916' id='19' type='layout-basic' w='98828' x='586' y='1042'> <zone h='64453' id='13' param='horz' type='layout-flow' w='98828' x='586' y='1042'> <zone h='64453' id='9' param='horz' type='layout-flow' w='98828' x='586' y='1042'> <zone h='64453' id='5' param='horz' type='layout-flow' w='98828' x='586' y='1042'> <zone h='64453' id='3' type='layout-basic' w='98828' x='586' y='1042'> <zone h='29358' id='1' name='QN 1' show-title='false' w='50439' x='586' y='1042'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='29358' id='7' name='QN 2' show-title='false' w='48389' x='51025' y='1042'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='25399' id='11' name='QN 4' show-title='false' w='49415' x='586' y='34907'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='25399' id='16' name='QN 5' show-title='false' w='49413' x='50001' y='34907'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='5189' id='14' name='QN 4' pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' type='color' w='32723' x='586' y='60306'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='5189' id='15' name='QN 4' pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Discount:qk]' type='size' w='16692' x='33309' y='60306'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='5189' id='17' name='QN 5' pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Shipping Cost:qk]' type='color' w='49413' x='50001' y='60306'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='4507' id='10' name='QN 2' pane-specification-id='0' param='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' type='color' w='49413' x='50001' y='30400'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='4507' id='6' name='QN 1' pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]' type='color' w='49415' x='586' y='30400'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> </zone> </zone> </zone> </zone> <zone h='33463' id='18' name='QN 3' show-title='false' w='98828' x='586' y='65495'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> </zone> </zone> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='8' /> </zone-style> </zone> <zone h='14193' id='22' name='QN 3' pane-specification-id='0' param='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Region:nk]' type='color' w='10249' x='91947' y='65234'> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone forceUpdate='true' h='5469' id='23' type='text' w='7906' x='2196' y='34505'> <formatted-text> <run bold='true' fontcolor='#000000' underline='true'>QN 4</run> </formatted-text> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone forceUpdate='true' h='5469' id='24' type='text' w='7906' x='90410' y='34115'> <formatted-text> <run bold='true' fontalignment='2' fontcolor='#000000' underline='true'>QN 5</run> </formatted-text> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='5469' id='25' type='text' w='7906' x='25256' y='-911'> <formatted-text> <run bold='true' fontcolor='#000000' underline='true'>QN 1</run> </formatted-text> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='5469' id='26' type='text' w='7906' x='71230' y='-391'> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#000000' underline='true'>QN 2</run> </formatted-text> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> <zone h='5469' id='27' type='text' w='7906' x='47657' y='66276'> <formatted-text> <run bold='true' fontcolor='#000000' underline='true'>QN 3</run> </formatted-text> <zone-style> <format attr='border-color' value='#000000' /> <format attr='border-style' value='none' /> <format attr='border-width' value='0' /> <format attr='margin' value='4' /> </zone-style> </zone> </zones> </dashboard> </dashboards> <windows source-height='51'> <window class='worksheet' name='QN 1'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]' type='color' /> </strip> </edge> </cards> <viewpoint> <highlight> <color-one-way> <field>[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Category:nk]</field> <field>[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Name:nk]</field> <field>[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]</field> </color-one-way> </highlight> </viewpoint> </window> <window class='worksheet' name='QN 2'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card pane-specification-id='0' param='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]' type='color' /> </strip> </edge> </cards> <viewpoint> <highlight> <color-one-way> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Category:nk]</field> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]</field> </color-one-way> </highlight> </viewpoint> </window> <window class='worksheet' name='QN 3'> <cards> <edge name='left'> <strip size='133'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='100'> <card pane-specification-id='0' param='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Region:nk]' type='color' /> </strip> </edge> </cards> <viewpoint> <highlight> <color-one-way> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Region:nk]</field> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Ship Mode:nk]</field> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[qr:Order Date:ok]</field> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[tqr:Order Date:qk]</field> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[yr:Order Date:ok]</field> </color-one-way> </highlight> </viewpoint> </window> <window class='worksheet' name='QN 4'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Profit:qk]' type='color' /> <card pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Discount:qk]' type='size' /> </strip> </edge> </cards> </window> <window class='worksheet' name='QN 5'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card pane-specification-id='0' param='[federated.1632qms1k9dpce1foxool1h7j9kg].[sum:Shipping Cost:qk]' type='color' /> </strip> </edge> </cards> </window> <window class='dashboard' maximized='true' name='Dashboard 1'> <viewpoints> <viewpoint name='QN 1'> <highlight field='[federated.1632qms1k9dpce1foxool1h7j9kg].[none:Customer Segment:nk]'> <bucket-selection /> </highlight> </viewpoint> <viewpoint name='QN 2'> <highlight field='[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Customer Segment:nk]'> <bucket-selection /> </highlight> </viewpoint> <viewpoint name='QN 3'> <zoom type='entire-view' /> <highlight> <color-one-way> <field>[federated.0q9hf1i18nuchx1bfritc1nke7i9].[none:Region:nk]</field> </color-one-way> </highlight> </viewpoint> <viewpoint name='QN 4'> <zoom type='entire-view' /> </viewpoint> <viewpoint name='QN 5'> <zoom type='entire-view' /> </viewpoint> </viewpoints> <active id='11' /> </window> </windows> <thumbnails> <thumbnail height='192' name='Dashboard 1' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nOy9aZBk2XWY970197Uyq7L2pffu6Z4dswDgzIDAAIOFBAEuoGSaNElLQcom LYu0LYesoCwzQg7ZEZIsibQdZFAyNzEIEBSIATEAZt96Znqmp/fuqq59y6rc97f7R05mZVZl d1cvNd3VnV/ETHW+fPe9+16ec+895557ruA4jkOXLvco4u2uQJcut5OuAuwoNu+++Qonz03x 6iuvsHB5Gs2yOP7ay1SN2123LtBVgB3FLKyRcoIsz51jbuY0L770NrotoQpVqubtrl0X6CrA jiL7o5BdIJmqsf/Y43hkDcnRmV1YYWl5+XZXrwsgdI3gnSOfz5NMJjt+l0gkCAaDH3ONumym qwBd7mm6Q6Au9zRy4x+O41AqlW5nXa4by7IwTRNVVXEcB1G8fn12HOeGywKcm0liOULH71RZ 5MBI7IplLctCkqQbuu+9UtY0TSKRyJbjt0pemwogCAKBQADHsfmDP/xDfuVXfpXWn/XE+8cZ Hd5LLN5zXTcwa0Veef0dHvv00/hdN/birnht00TXdTweD7Zt39APY9s2juPc8I/6B99/mWS2 3PG73oiP//e3v3LFsqZpIsvyFb+/GvdK2WKx2PH4rZLXLbUpLZ/m7Ptn+ab3ryiZWaqaD6/H YjARIrOc5sSbLxCNHcNyOQSHejkYc/Mn336RJ554mLLj5Ze+/sW26334yusceeoLnD/xGqmK iVjMI/mDLMwtcuzhh/EosLRwgWzWJBD08dY773H4kcd4+Ngx9o0NXdfL6nLvUVq6sryml9O8 3yavcQ7EPPzpt1/iiSceouL4tipApurnX/zr3+UHf/QnmP17CRbX6Bs/SH/cj6ObyMrn8Xri xPujFGslFFnm85/9DKMjg6SL+pYK7rv/IK+8/CIBd72FjQ+MYBs11oQqy2tJZEGkt2+AnohC ObfGA49+kmA00BX+LtsiU9uQV2tgH8F8kr6JQ/THfdi6idJRXp9pyuuu9gLdCUOg77xxkVKt 87Suz63wE588cMWyu2kocrvKFotFAoHADd1vO9zYk3Rp8uxoGcmxrvBtFXPh3SuWtW0LU7wx xbvRsoLigdjBG7rn3ciOK8D1GMGObZEtlIiGQztdrVuG8f3/Gb2weLursW3E2H5cP/8Xt7sa dww7rgCbjWA7m0EKeqiZElHVwXT5ya6vEHKLrOQ01ssGQ64KYvwwP/3Fp3e6el3ucXZ8Imzf /Qd59+UXKes2AP0je7AqOcSWMffE/oPYgsRAf4J9Qwl6+ke47+Cena5aly473wMEE+N85Qvj bcey2REikU3+2aPHdroqO4J07BuIZuWGytq2fcMTcDdaVvBe3zzO3c5tMYK3CP8uxgk8jmPb N1bWsnGk7QmxMjiIFNqwjW7WG9Olzo4rQHZpEjs0SCa5xr49Yx3PyazM8s7pyzz+ifuZmlvD 0UuMjE7Q13vlMII7hey//32stbUdv0/Pb/w3+J58csfvc6+x4wqQWbrEW8fPY2TXOHOqB9Pt RyimUd0h1ubOMPLgs9jFeT79icP8f3/wH3CNjGFXdKrVEu+8Z1NJz2CFxvk7P/HZna5ql3uQ HVcATzDG008f4sxrL1C1QVS9jO8JgiEgC/vYP96PkTV56c2zfPrZz0AwjpXPkcvVW9Vw7yDD E3t3uppd7lG6M8E3OROc/c7fIGraDZW9HkPW89gnUIeHm59302zuzZTtzgTf4eSefBy7czT0 FRkNRZAl6aaEqcutYcfffn5tkRPnZnny05/C3dLI6oU1zs4sM37gfs6+9QJicIAnHj7a/H49 tU48Ft/p6t00f3HmQzLV63OD/uOnPkvY49mhGnW5HnZcAUrZLIWKxtsv/pDVbIZgNE5+7gyx gWEW13NExo4xMz2FGtUJSiJ6KcPJqSUO3jfO6ZMnKFsyC2eP0z9xkBIhQuYqR598jvGBu8eV 2uX2seMzwWogiKhlMZUQ43v2Eg26cYdiKLJAIpHALUE4EsXn8bKyOE3ZEBGMHEXNxhfpJR7x M7L3MAcPHKKytkhPLMrsfDejQpdbQ9MI7i6JvLG24PXZaarm9WW5+vToBG5F2VVLE29X2Y99 SeRu4k7wApkFN1rt+sr+MLPcvPetCIUI+Vx88fF92y6727xAnbhV8rqlNvMnnueFMymGBicY 3zeBXsyTiHr5z6++y1P3HyAU76NQNqnmVhg/+ADJ2XN4evpZm5llZP9+XviTP+bHfvnX6XfX r1dIzvLq+1M8/Zlnbvma4DuB77x56Yprgj8uhnuD16UAdxNNeR3aw/jeMfRSkUTEs1VesyuM H3qA1ZlzeGMb8tpRHVV/iOLcaX6UzjERFZift+kNu3j+b7/LxEAQ/+GvkL9wGlfPOFNnz5Ms HKc/Osj3vvUyn/jk4bZrTZ48xyPPPMebL36HVElDKhSR/EEunjnNg099jqhHYH7+DLmUjao4 nJ5ZZuLIIZ79sae6yyK7bAvVH6I4e5ofpbJ1eZ2ziYdcPP+3zzMxEKjL68XTuGPjTJ5rkde/ emWrAvTuf4zR8nnu/8wnKZsCXhlqxRx5y8WhkRHUQIRovJ/J2iEGe0MIR45wf7AHj+ri4Ucf ZGZhiai6cb37f+xTvPzGS/T1jxC0BHqDAWyjSiwaxBvxYJgCjzz2NJgyplZhYGKN2OBgV/i7 bIuO8lrIkrfdHBodwdUirwO9Idgkr92Z4Ju0Aa6WF+ja97YQb2JJZKOsW5XYN7R9t/BuswE+ 1png7doAe0YHdqxSu4nx1PfuiPUA2sL1lbVu4r5XKiv4e1GP/vQNXfdG2a4NcCV5vSEbIHDf 19jueq3rMYIdS+fyYpK9o8NXPe9Owjr155i7aE3wTiImjn7sCgDXtgECR68srzdmA/RuP0Rh sxFsZ/LIIRdVS6JHFtFcLgqZFH7ZYq1gYKgB/JUlovs/2V0T3OWabMsGuIq87rgNYFYLvPzm e8R7olQtgd5gkPNn3iTUf5CArIE7QjDoJbMyj+AOUS2V8ag23p4RDk5cvSe4E2yA0h98Aafb AwD1HsD38392xe/vRBtgiwJcKdfi1VhPpYjHPv7VW3eCAmiL718lL9C17n1rjOA7payg+pD6 Dnf8DnZGAW5WXq+YG/RP499nqC/G6tQpHMNiqSIRtdYZGD/C+7NJDvV6wKOwvligb+8A5958 iYP3P8KJi+v8s//x1++ZvOuVD5Y/lvUA1yqr7pnA8+CD2yp7u7xAO0EjN2gneY1Y6wx+JK8H ez0IHpnUUonePf1Ned3SA8xNXSYx1s/Zdz+kLHlQ9CyqJ4CGitsqguplPVemzysgBqIEPH4M Wye1OEekd4D5+SSfefappmYtXziO3XuIpcvTPPboAx0fYvLMCS7OLHHg4H4WUmXsSp6jR49d c03wndADLP3Gf/exrAm+Fv5nP0f0l/+rbZ17N7lBt8irlkX1NuS1AKqP9VyZXq+A5I8S8LbL 647bAJff+S5vLVrk5y4R7kuwWIGolUdVwyQXz/PAMz+zsSb4j76NOjKGU64R9DoYcg+FxVME xx7uuCa4qwAb3KsKcLPseF8WHdzPc4cHWZkaYHE1w+GHxgmpgCWwvjpA33g/QTHEaycu87W/ +7Nokhe7UqaqVVhdXGXv0FP4I4mdrmaXe5TuTPBN9gCVCxcQbzAvkG3ZiNvMC3StslIkgtLf v62y3R5ggzvHmtmlvO9Wr3s9QAPbFm7CCG4v+9R1zM102WDHFeDCmy9yNi/w6JEJspks3nAM PZck7BV44e1TPPOT/yWv/+XvYXsT/ORznwXb5vLMNO6gn5BLpmypiFqeaN8g03OLxP0yrsgg iZ47Y4vRN+ZmrntN8E7wxMgYqtRtz66XHX9jg4ePcfJb3+TVYo1QUERYXaCSWsG0LBAaC8MF XIrE6fc+pFrIsFYuo0TCeGUZrBqXpy6zf+8e0mWJbNgmkpDuGAXosrvZcQWQRJG9D32SPcOD 2CKATXJpmVg8iuVIRHwCDz38KEp4AKpZAkf2M7+wxMTeMQSh3sUfnBhH8YVZzxQJqSahlrFu pVLBNM3btiQyLElIinrtE3eYSqmMo2zdoqoTu21J5E6yq43gBjcjxDerALtJmHZz2Z3irpmw FYQbi8m/2bI3qjjdsncG0u/8zu/8zu2uxM0iCALTs7O4BJOFZB7HMamUynh93iuWcWyLUydP EgyHuTQ5gyRL6OUystuLuA190Mo5puaTyKJFuVzB4/VuKxZFrxY5df4yftVmKVXCto1r1rWV dDaLUcmzkqlgW9svaxs1Tp4+j1uySeZqWJa+7bKObfLhydNEwn4uTi8iSwKVchm3x3ONxsNh cWEJv0/lzPnLhDwi00spRMzremc7yV2hAMXUPH/wzR9glcusp5O8e/wlDDnC+PCVJ9Aso8b6 /BTfe/4N/CGR7752nEy2xH0Ht5eI9+VXXqKSWePd94+TLsGBPaPbKlcplzl78m3OTacoZ9Z5 440f4njijA32XbOsbZT5V//xR5ilFOlkkjde+z5iYIDRgWu7QF/57l9RkAIsTk+TSq7y+svP I0dHGElcO4gxN3+O53/wMqcnV1CtGm9+8B6pXI2D+yauLsCGxve//wa5zCJGIcNLZxYwKut8 +PYPKRFlz8j25i12kjuvT7pO1pfnOHFqCtEqo+lV0oUqvQND5FNXDk/Qyzk+/OBd/vqVDzl0 YIDpmSWisTiqUUG3tmcS+RSRxfUSPfE+9FKWbRZj6uQbzBdVgqpBqlyjf3CIXGqN7RTPJlex LBPNqJCpavQPDZNdT26rbCTWy+yl0xSrJXI1nYHhETLJ1W2V1ao6Xr8HWRGYS64TjfVhVfPY 9tVLG6bG0vwkFc3i0vw6Ma/AerpI78Aw+XSSO8H6vCuM4C5dbpRd3wPc7Uyd+5CLM+0LbqYu Xdp2j9Pl6nSnDu9wXnz9HWy9wumeCD2DE3idLC+8McXegR9xaqbE//pPfwtFut2m5O6l2wPc 4VSy63z2K19lJV1mbe4itVqGfXvHKek2vSHf7a7erqdrA3S5p+n2AF3uaboK0OWepqsAXe5p 2rxApew662WL8aHrW4KoVQpML6U5tG8cgPcvrfDP/uiV5vf/8tc+x77BCGfPnmbfwSO4lJ1x PhmTL1D7m/+++dn7C99GiIxx7tw59h86girvTCBW6ZVXyfze7zc/D/ybf03N60FVFWq6SdDf 2VitlAvMLqywZ2yY1eQ6pmWzZ2J82/d9a36Wb5873fz8v3zmWQStyuziKocPHmgLUyiX8mi6 TSgc5tyZD+ntH6Yvvru2mXIch6kL5xjedwi3fB1tt+MwNz1JqG+YsL8egv8//N4PuLiQblEA x+H5H77EV3/yOSbPnaNSrVKwFM69+xLPfOZzLGfKBF0mpbJOKBZHy64jebxUHA9Cagq77wCH rlKHs6feoWdwL5MXz1IzHfRygWA0Si6dIz40iCJIpFYWyJcqDA0NkEmlCQaDqN4gB/ZO3OAr g9Mnj5MYO8jF86cxHYFyIY/qcuMIEgomsttHJpMmHo1QKuZZTObYv2cYty/EvusQxs1cunCO dD6LYct4FImesJ9kKkOsL4GjVUgMT3Dh4hkGYj38xV/+BcFABEsUKRezFCs6fo+KLxhh73XW 4fTp9zFFP++deId8vsDg4CD5TBbDqlCuCjz19NOcn7zEWmYNfd8hUqk1bFvCtgwsvUIw0kMh m8XjDyLKLsr5FAeOPEAk6L/hd3GrmHrvhxSjDzAzOYksCdRKOYxyig/W3Dw4rKKobpZWs6hu DyPDCfLFGsXkNAcefZofvfgKX/76N7Zcs60p9sgwu7jA8ddfRvL1Mr+SZM9YH1OXLrKeK4Pb jV+E1YXznJ1cZ99ojMe+8sv4+7z85795Ea+kozoieLbGlwSCIc6eOUUpn8ZwJCYmxsgV87z+ youMHD5CtaxxeP8+gj1uZiZPc/LsPPsP7OXrX/2pm3pp/kCQM2dOU8ysYYkKQ0PD5PM5yqUC Ag5YNsN7j3D8+CtYqPT19fLyyy9y6OijN6UAiurm6NH7+N7f/ohA0E25VqUnGqNSzvPmq6/x zHN+XKLA5PQcY6Oj9PUNU6wVWJybQQ3EefetVzn28JPXrQCJxBBvvfc+I+PjxGNB0ktTvPz6 O/SPjDA42GhIBCq1Eq+9+iK2rLA0n+SBY0eJh73k1qZ5+c0zHL3vEAuraRSjgL9n4I5QgEAk xrmpcxiFdcq6SZ/HxJS9qKLMxYvzmOUUuhTFluDcxUki8V7QKzwV9nJk/wivvPgCg/39jB68 v3nNHXGDrqSLvHxyrvn52Ucm6AltL9rxZrDSlzEvfb/5Wbn/G4je6JbzFldWGNrmAvLtoM/O UX3vvebnwHNfQPTtvI9+IZ/jwnqy+fmp8T3dZZHb5AfvXiZVqHbnAbrc23S9QF3uaboK0OWe pqsAXe5pmhaT4zhUKpU7IvOv4zjUarVmRgBFUXC5XJTLZa5lsjiOs2WZnmXV05c3FmRvPudq i7U3n9v62f4oI5woih3Pg431xoVCgf7+fjRNa8t00Po8jXNlWcayrGs+aye2m32tUd9O76tx TBAEZFnG5XIhCEKz3qIoIooilmVRq9WwLAu3242qbs2OYRgGtVqt7Vjjfo7j4Ha7URTlmvV1 uVzUarWbWr/dibY31XjYO4GGwOu6jmmaSJJEsVhEEAUENl5gJyzLagpRYyF2I/PDZsGEuiA3 PrcKxebrN9Ivbj7e6dxWwRJFEb/fj6ZpW+7fWo/GdSRJwu12o+t6fU8uy9py7c3P0iq0m6/b iSvdv5F2XRRFgsF67iVN09rqDuD3+/F6vXg8nmb9Niue4zhUq9WO92vU1+VyXVMBtI/SzzfO v5Vsq7lfuHyeC/NphnpdBONjGCWbkWE/r7x9imc+/cQtrVADQRDw+XxYloWmaei6zqq2hCgI DISG8Cr+ZkqTzS/XMAwURcEwDGRZxnQMSmaRoHrlmc9rCbUgCM3rbT6v07UavUOrwuRyuaay 2bZNOBzech23243no8Xmbnd9t/FyudwmgK3Cv/m+m99H63mby28WxkaZxi7stVqtKXyb79MQ +kYv0YlG79DpHTWONXqsW92yb5dtKcDJS7M8OCDzx++neXxoAay9rC2fp1jZ2ZSAgiDg8Xio VCoYhkGVClgOx3Nv8Mno0yii2rH7th0bx7Gb11gtLSPUJOSITEAOtbWcra1/631vZKjVWsZw dHRbIyCGmseCwWCznK7rpFKpZg8lyzKyLDeHfwCRSARRFFFVFU3TEEWxmcy3tZ6tnzsN1xrP 2CrwDTY/f0PxyuUypmk2e1FBEFAUBdM08Xq9TeW82vvZ3HPdyDk7zbYUYCga4PnXPuDYQ0/Q 6y1TtHwEFYOzC6s7XT9kWcbtdpOsLXOpcpFj7geIWvBe7m0eCj1KzakSlCLN803HYDJ/DlV0 MeAbQZZlIp4eimIenxTY8oN3Gr+3crXx8dVarZXKIoZhEIiG2spBXegURSEWiyEI9SS3brcb URSRJKnZa2SzWWRZJhAIEIlEMAyDQqHQNqy7Vp07jfU7KUbjmCiKTcHXNK0p9IqiYFlWs3fa zOahXaPXbrzfTu+48Zy6rqOqWxuzj4NrKoDjOPgivTz97Oc/OhIkggUE+NynP7WztaMuoIqi UCwW6JcHMDFI2UkM02aluIRiupAiMn4p2Pwh3XhRbAVbsDAMA5/ix+8L1H+kj95xqzB2Gu50 ai2v1MK2nte41oBvmKqx0UO2DltaE0RJkkQgEGg71mh1o9Eouq6TTqfx+/2oqtpmIHdKNNWp R2hV2s22yeZnFEWRQqFAsVhEFEUikUjTuLVtm3K5TDAY7OhoaHUkuFyupvHc+kwNxWrYOtVq FdM0OxrQHwfXVABBENi/f//HUZcroigKQ55RPsi9z1x1FtOxeKbvx3HhoiZWcH+UZNe2bRRB pTfYhyiJ+KQAlmVhWRYpI4lfCeKX23PNbx5PX6kVahWsxnmmbbJUmEeVVRLeweZ5AKroQpSk jkZuA1mW8fv9bUqk63rzsyRJqKpKLBajVCpRrVa3GPebaQyTrpaFrZO907hftVrFsixisRii KFIsFpvGcKsStQ6NGs8C9XF/q+A3kCQJ27abniSfz0e1Wm32ene0DXC7URQFVXTxlYGfYqp8 nkH3KCE5wmTuHKrkIm9mKZoFxnx7ERDwiD4Uue5ZkGUZwzCoaGVUUcWR6kFdFatMTksjiiJ9 7sE2z1Lr2Lp1uNNq+DmOg25roAtUrQp4t9oUm5WmtSzQHNI0xv6mabaV9/l8KIrSNERNTKbT F4l7E/jljezYrS2+JEkYhtGmAFfr4VqxLItqtUogEOjotWnQ8MyJotgU/IZiViqVK3pqGl6c xjW9Xi+KotzWlIm7QgEEQaBql1krreJzAvDRhixRTwxJkFgvrWGZFqdLJ4j7E4TFnjbPgiAI jPgnmoJWtkqkcuv4CWI7NvP6NKPBPVsEpZO3pfWzR/ISDodRRVez7OahTqdhEmzsTNMwiFvd nQ3PSrFYbAprY4wsinUB9wa9SJKEaZqYpolhGM3rNzxgjbKb5zg62QSN443h1dVa5IaXTRTF Zq8kyzLlchmoZ+z2er0dnQub2c4cwE6yKxRAszRWsytYtoXlmOSNPAQEQlK03nJ6TdZqK8TN QUxbw+VxYRgGqqo2W+HWLZSy1TR+6i2oKIiIukTFKuOT671DQyA2/7U7bIXkxQ82GPbWXWJM 02y2eK1j9kZr36gfbIzHG0MYTdPw+/34fL6mILtNN9Hgw9RqNarVKqFQ3cBubBGVz+ebPYii KPVhmmmiaRputxvHcZq9Q2NI0iqUlUqlqWiNejWUs1G/xr81TWsa8w1FME2zo8LdyewKBcjU 1pFtBQeHKjqWbaLaMmF3BMdxiCl9xNy9ZIwUfcowAu1dfGOM2Wi5ENq9EhYWsiBf0/XZMMih 3Xi+0pCikyJl9HWKeoGoGkdF7eilaYytG56hRtlqtYphGLjdbvx+P5lMhlgs1lQuv99PsVgE 2sf1jV6m1ZW5uXfLZDIYhkE83p5n1OPxUCqVCAaDiKKI1+vFcRw0TcOyrLZZbVVV22ya3cCu iAXyyX4yzhoSMlWnjCyouOS64bshfAJRJY6A2GYkNlx7jbGq4zgkvIPkpTS6o1Fy8rg8LkR7 YzjROqwwDKP5udEDdPKktNLodTrNPJ/On8Bd83M6/x5FI7/Fpdo4PxAINFvShvFoGPVeRtM0 JElqDukayLLc0ZvSUNyGzVGtVlnLJjm/cprV7DKFQgFFUYjH403la/zn9dbXcfj9fkKhUFMR W8NAXC4XgUBg1wk/7JIewCP6GAgOM1ucwiv5CHqDRJSts7qt/u1OY0tVVanVaoiiyLB/nKyW otebwCNuI0X4FXqHzW7HVjbbFACq4GbWukiP2Md6ca05T1C1ykxnpugN9CEKIgl1sFm2Vqu1 xdM0jsuy3FRMXdebQr4ZQRDQNA1BEJrDpuncKnGln7yTIeqOXbH+qqoyPDzcHOY0QhtcLlcz ZGO3CX0ru0IBHMch7k4Qd9cX61uOyYX8KQ6FW5a2tfwIlm1S/uN/hzgzg/yb/xhvMNE8x+Vy UTByZMtpop7YFYX/av7+zV6eKwm+7diIQnsPcV/4QXJaFss08Si+ZpyTKroJeUNUrQpqxcs7 +dcZ7hllX+wQuq633cfj8eA4TtND1KoEQHOM34jtahinrSiySlpfw+fasDFqVpWilSeuJvB6 vbhcrrYhWMMb1RgKXcl7c6UG4U7kjleAfC3LzOplgq4QIbW+vFESZAZ8I23ntba0yfnjPPgP /zcEB6aDQfjNf972/Wp5CQyBgpwn4AptcV9ejYZB3TrEavxtVYi8kSGVT+Fxe+h19zePe/Dh cfngI0+hYRhIkoSISNyTIG9kMLw6Vtmsu1fZGnYhCAKFQgGfz9fcH63xfC6Xq00hGmN/VVWb CgLQ7x7CdtkI1D1ONavKbPYylm0i98r0eA60PXfDJmmEQlzNdbkbBL/BHW8DJAsrePUg+Vqu eUwQBEJKpPnDb2mFwxGyY3FMVcY+en+zDICDg25pSLJEr7t/iyHbOh7PGZm6r5/2QLKrTdw0 jzv1/4mC2HQTtv6nKEozzLsxnl7KzWMUbIpmDgODmLeX5dICZ9Y+QLc1bMdmuTzPWiGJYRuc Wz7NenW1rf6yLLNcWqBsl5o2QWMI1HhXFatE2kqypi2j2TXyRpZ1bRUvfiRBxqN4Oj6bx+PB 7/fvKi/Ptbjje4DR6ASXtAsIjkBWTxFRY9iO3Zy4gq3j84HwYYpvvEFKLxH1D7FQnKn3Gv5h 1muruG0fifAAgtPe8rfGxlStMoVcgYIrz0hwvOlF2jzG7jQEsm0brxAg6DWwqHtJNp+zVl3B LXvwS0FWq0v4VD+CJFKxS6Sr68ioFKp5RqMTxEIFJGSWSvOUq2WWqvOUnSIjzl7yZp5eXz8C G618ppLCtA3cPs+We+eMDJPZc1SsCr+f/EOCsp+fiD5HXOrDo3p4ZPRx/MqVt6DdTa37drjj FUCVXPT5+1lcmydbyyKFZNZza3g8HgZ8w23eltbhSEDtIeDqQbNq2JqDIdZwqNsSqqTikwJN dyBsDRpzix4Ur4xfDbR93yl0d/OscUMhS8Uiiq1ScZXwSh+Fb+OwXJ4nU0kT9kUQ3AJOVSBd SzEcHMPymORzaRwbREXAI3sJqkFmc1P4VD+WYBCz+xFtkaS4yJP9z6AIdVug8lF07pH4A1sa hZyRwSW6+D9m/ncUR0YWJGJKmEcCD7JUTYHH4YDn8FWF/27kjlcAQRDwKj7cXjeSIGNbG67I zeG6DRoTPgAiEkF/CMcEy6zPtPqFULPsZm/RxnUEEt7BLWPvxvU7/Xvz34g/SlnbEH5bsLhU OItb8zEgjVIgQ6aWwvbYYNWN2ppVIUyMAjmy6znW1SRzuRks02LQO4qm1rA1EKMmQAIAACAA SURBVCWJw7EHKBTzLGunORJ7EMd0tqy+gvqwbyk/zyntJP9p9S/JmnkA/sHgr3LAdZCz1nli Yh8r+SUK8TxBNbTlGncrd7wCQN19mfBtBJsF1XCbd6XVx9/JOAtLUUzJbIYWa2aN9WISrxjo OBHV2nquVVdwSW5Caj3kunFOtVpFURRy1Sxujxu/HGiGBUiShCiKhF1Rslqa+eIMg4ERFioz lKtlqkIVZFAEhWwpg4NDVIxTsysE5TDrnlUqpRK2ZXEqeYIBcxzNW6ZsFhkKjJF2r7HH/wTJ 0hIzucsMieO8v/w2Y4G9BJTQlsbAcRxi/l7+cuGvyJp5XKLKz8d/liFllOnaLJKgsGgs0Kf2 Y5g63P59vz82doUCbDZ0G8K/WXAb515pZlUQBGq1GpeKZygVyvQHBwkLPVctm66kcMtuvIIf 27abPUsulyMQ8FPQc2SrFmbGIR6LUy6XmxNImeo6NbWCKrqw/CZD7jEERyCkROvjdN1hIDhE tppBdSu4xbp7c8J/AJ8cYL58mcOBh6lYJUolk6JdxO/y0+vqxzZsQEB3NJL2EoOMsV5K4g37 kQUZy7FYrizQ5+lHFmSSpRUWaov8Wv+v0uvqoUfso2TVKJkagmCRsjV+fPzzRDtk9bub2RUK 0Oq+2zy51GmIsvnfsKFES6V5FnJzJKQh8kaWuKc+R2DbdjNeqLUnOBA9wlzhMiW7QMTV0zzu drvJZnOUjTKyLOPzBqlUKng8HiRJIp/P4/eESGVSKBhIkfqs7aBrDICiWEAURPyE6An3bonN 73MP0CP3osgKXtmHYRpoRg1FrDfPWT1FSImwJ7Sfyfx5LhqnwbSZSV7i4Z4nUCU3xUoBn+In LEcJ+kIc9R8iqkR40vcpZvU5SlZ9uFSyS1SlCmOBibvOyL0Wu0IBGkJ5rSjFq9HoAUJKpP6f E2VBu4yD0/QodRoCOTiU9AKaUyOsRpvnBAIBDMNgb+xA29hfkiQKhQI9PfWI1MOeo4hi3bvj lj2oogvHcRgOjgG0GeKNa2wOo84aaRK+QTS9xoX8aSzHAl3AJbkZj+4lGAvznZVv8Un3MyTt RRwcfJKfQ7GjzefJaWn+277f4HTtJFkrg+hIzSesChV+4+A/RBJ3hTjcUnbFE3s8nmZU4s3i Et0cjBxlunKBPeqBtnUAnUKfdUfDsUE3taayNIZSsiwjiiKXLl1i3759pFIpgsEg6+vr9PX1 tcUOLRXn8Ln8jPr3NK/fiFNqTWXSOovqOA41q8pCdgbCINsKoiHjJcC6uILh1GeIVcfN1xLf oGjnGbf34bXr9ogkSVyqnMZrB1BsF5Zg0av0MltbwHEg5u3hyYEnGfaP3lOGbyu7QgFaBUUQ BJarC5iWQcAVIl/O0eOPEVTC177QR9dyiW4OBx5sHus009qcuRW9+L3+ZrhzQ0C9Xi/Ly8vN mdHGZFOhUMDv96PrOtlsFpfLRTAYxCN7mS5dwK8GiSqx5rVswWKqeJ6slWKP7xB97gEAqkaF qlMhIvZwX+yhptL1B4YQJBiV65me6+t2RURRJuLEmrPUhmGwWltC1BRW7SV6pF4Gor2EnCAP K4/jUtwM+UaQxdsbj3+72RUKAPVeoGZUWddWKVsFgrUYa/YKiumiqlcIyKFtDY86hTy0tv6d jGrZUVF0NxWrhE+qzws04vkbM8ONlV1+v590Oo2qqvT29mLbNpVqBctj4cJb70Varr9eXWWm Mkm/OMxk8RxxNYEgCKxXkzgaeKNeVLGeI0iWZVRRxbKsZohDYxF96/M11iFU9RIA/dIIuquK 1wwwGp+47YtQ7iR2jQJIssTFwlkCWpg3Km/yUOQBjgQeRBREBMRmrP/VlKCTDdFwnbauxmr8 bSiFIitUa1XKRqm5FFGSJIaHh5EkqRmT3ygXDAYpmnnc0saY38Fh0BjBrWysXxYEgV53PyFX jMuVSY74jjbtAZ8cIEcK3TJYzM8jCiIxfy8VrUyfp95LNLIpFM08btGD6EjN0GdBENjrO8Si M4/j2ByOH8OomXdVGMOtYNcogGbVOJF7lwl1goDkpU8fZr2WJOGpT1Y1Fno0DOZr9QadFrJc SUF6XHHWnWSbF2jzOW11tWvk8jlMcY2xSH2dsiiIyMJGy9sQdAmZJ6NP4URtdM1o1sFlu0AT SRlruFQXkiCRq2RwdAHNVcUleprrf5fzi7hdbvpdw22NgI2N3+0nosRwqx7cSuf1C/cyu0YB XJKb0eAYVs3kqOtB5pgkbiXaWt5GPHwjtV+nMOXWlVybg+BgY8lf468gCCiOyoB3uO176Jwp AurRqjWhgiM4rFYWUSUXMXdf87zNCiMIAgISsrwRcuzz+QlIAWRBJuqO12e3HZ2qVcElbvQi tm0T8/biEtxbDOnl4iIu3cMZ533itQSHB47egl/i7mLXKIAoiPzkxM9wLvUhyfVVbGwcq57n p1XQ2xaFiFA08/WYf1toSzmymc2TbYKwkQVic8+gaVpT2BqLzzfjwkNZLyCbbsqUUcg11x50 Ot9x6nlyLMtCVVWWy/MUtDx7Agea8yCCIOJxfGiaRskoUjByhD2Rpv3TmnZREAS8spc1PYno yKwXk6SrCWLe3ut99Xc1u0YBoK4EI6EJqnmNkBhhIlzPV7R5AYaiKKSr6ywV54kKvaTFdYb8 Y1sC2TotbmnN5bk53qdxvDWdX+s5rcsRHcnGsk3W7CUMdHrkGJbRbmc0WC0vops6Ce8giqxi miZxTwKfK0BaXyOghvDJgbY6rFnLWKZFvpYjEu6pe4nMKlWzjE8KULSK9Hh6CbhCrJSW0Kji lq+ezvBeZNcNCINqiIf3fIJ9PYfI6Clsp31uoCEgHsWDS3FRoQgiW7IdXGlSrfF90cyzrq22 nQ8bk12KoiDJUjP2p/VaZbOEg00iMEReyCAgsF5aRZKl5joARVHqZWURwzKQHAXd0ZvfqZKr HtJQccjWMlvqqDoucqTpD9ZjpFYqi8znZ8gV8sxkp5jJTWJi4JY9jIX2cChyDK98+ze6u9PY dQoA9Z7A5VNZzM9RNosgwGzlMm+lX+N04QM0W8Mj+TgQuY++QD+26TBbmGrOJwCs1pYwnY3c Oa3j8oKZo5ArYBdgpbKwxU6A+qqy6dQkeSPbdty2bS7mTuMzglT1Mo/0fBLvR8m4Nk+6zeQm uZy+RDTQQ1pMktPT5PVssy4+KYAv5CPhG2iWaSyO97sCuB0PlwsXWPn2v2P17KvUzCpZZw1B EOhx96IIarNX65Snp8suGwK14pY9PDL0OIu5eT7MfcDZ/AUaiT9nStMc9d6PY9vUhAohYmhW tTmzulpcpkqZeIth2krZKOKingS2apauWZfNQ6WEe4iclWLUtweX5GZfz0EcNsKxwWEmN1W3 SaT6fge6oeGVAuRruWbgnSRJ+IUgWKCZWnN4JggCpUoJExOP7iWnZYmIB1ijgp8QiqwwGtyI 62l1jXZpZ9cqAICgCFRKVWJ2jMf8jzCpTQLwiPo4Lqs+3g3aUVaEeSa8++uCYxbwmH4kl4gi qm0tf4Ne9wBLxhyWZdHrTXQcLiV8g9je+sq0RshDI11JPU9o61qCjfVr9d4GEAQkWWI0MgGm wN7QQSpOmSH3KDhbU7kAiLJIzkgTUWKEhQhr2gqWYDL49V+nopcZl1TypVzb8s3W9CpdttLc JtVx6olZ75QdYraD4zi8t/I2c+lZolIPRSdLUIwwKI21nac5VfxhPyElgu3YnM6fwC8FGPHt QRbqQtZpQ4tWWhXAMAyyZoqKVqY/MNSWGvFi9gyKoDLoGW2Wa3WxNvLqt9oWm997oy6CKJA3 swSlMLZls2YsQ1lECcjEXQkMQ0eUJGRpQ1HyRpb1fBKv18uh/qN3xJZXN4umabhcrubfW8mu tAEaCEJ9t5jJ6gzHS+9RtMqIbG3tROq7xACsacuImkS+kme9utq8TqcozKKRZ6WyiIPd/K5p JFeKeI0AWS0NbAh01Bsj7u8jT4ZFfYY1a7lu1H6U2rzhom29Z8M71fhs2zZrtRU+TL/DTGaS U6kTaE6NTCXNgjXdNGZV1YVlWm0uXMM28LExW93l6uxqBQAY8A7xUN8DACzWkiwa82TsdSpO iYKdJWOvUSKPX6pHO4aVHvxqkJAnjFtxU7OvvMvNenENueJirbZ1I5B4sBfTq9P70XqCBr3u flTRxXJhAZfmZbWwRNmqpys0BJ0z2feZLUw1F9gbhtG260sDURAJqfXc/LIisl5JUrLyJPyD lPQ8xY+WNbamOzmX/hBLMOkbiXNg4HB3zL8Ndn3/KAgCz448x1hojMXiAi5RRSyJGI6OhYlb 8GFJBnpFR/JIuCQ3Y+E9VK0K59MfIkkKx3oe7jijG/AGqGgFEupg23eO4xBQQgTkUNv5jWvo tkZMSDBvTiPKIl7JB0BGW2dImGBJn2E0UA+LboQzNMo3F8R4656f6fQkki1To0JMSOCWPGQr aQzbJKiEOZl+BwuLkBPBkHQGIoOE3dGdfOU3tS7jTmPXKwDUBfBA+DAHwocBMG2DmfXLaGYN r+TDJwSRZbmZXFYURVSPQlHI45gOyeoyva56jqBKpdIMu1YsN4P+GNhg2htJYFuHFp3shYAc ougtMJ9eRLFUBOp7CLhlL0U1z5h3b1ORNu+sslmZooEeDFsnJsfJVFPE3YlmyLTj2PgIINgi PsGPx+Ul5Ipsqc+t5m4RftjlRvDVKJfLzQwJPp8PSZKa230ClEolbMdmXVvFgxdJlfBQTxMY CNRDnnVdR9O05g4pm2m02O9n3+K+8EO4pXqMzlzpMtgQ8fYgIuIV/cxkp5BthUgg0sxG13jn jRnkwvJF9Nd/QOin/j6qqm7Z6WXzLpWCILBcWsARHHp7+oi4oqjS3fH7tbKTRvBd0QN0wu12 N7OhNTZybmz0ZlkWfv9HewG4LWpmlT5P/5ZrNGaP0+l0c8fGVhot4cPRJ1tabptsNYPH8SJ4 BSzHomjlERUBwXFwy96mj990TJbKc1CGAf8wtidA7eAeqtoiVtmq2xPyxg9uWRZFO4dH8KFK 9eS0cVeCQDCA13PtBL9dtnLXKkAjc3GtVmtbSulyuahUKk2BDavRZhqQzbFBUI8rCofD5PN5 wuFwxwjTVhwcfIKfil0mVUuSrWToEfqwJZvRyATL5QVMwyQW6COnZQhYYRzgVOE9bMsiOjCG Xa2iyDK+gA+v6mOttEoqv4bX40MvmJTdZfo9Q5imyUx+EqkgcWDkEEHX9lbFddngrlUAqAtv rVZrelsacTYNOq3+2hwRujkQDmhmYROEevqTtiA4wBQNVEll1LcXj7zCXG4a27LQCxouzYMj OBi2Tq6aRnAkTMegTxhi2j6PJ+qmzztAr78PUajbBuVsCbfpR5IEfD0egmoIyaxnmZBECdXy cDl3kQf7HtvhN3r3cdcrQCAQoFKpUCwWcblczU2eG3nuWwW807rgxr9DoRDZbLbZq0Sj9e2Z crl60t6GEmh2Da8VQHHLiIKIptewser5TBWIBCIMhIdwSx56IjEkW2I+M0PSXGJM3suB8H24 Xe1Rm3v7DpAJrdPr2UjmWy6X0XWdqD/Gh+l38WeDVHsqeOTuUOh6uKuM4CttD2pZFoVCoWng Nozbhrenlc2tfetxoG1TOKhvzH05c4mB0FBzYX7eyOISXbhEDyWrwFJmgYpU5P7+R4j7t8Yf dVogsx3yhTzr5SSp/Dqr9jyf3feluzK3504awW0K0NhF5G6ksXqqsVqs8Rk6D4Xg6oLYKGM5 FoZRD2pzSVvj7SVJIqdn8CuBZlKrW0VGS2FbNj4hgOHoKKpyV/YAjc0+GpOGt5KmAnTpci+y 60MhunS5Ge4II1jTahTymWufeA/gdnsJBLvuzI+LFgVwmJ28gCucoD++MZ2+sjBPz+AI6g30 FbnUGt5IjPnLk4zt3Q96hdmVDKOJCHOrWfyKhTucwEjOEd978LqvP/vXf41+8PrKfVD5gGl9 +rrKLOvLnKqeuq4yAMfzx9Ec7brK/Kvxf8lvPvJbpNfXCQR9zC6usX/PGAvTlxC8UbRihqGR Yc6fu8iB+47iUequ0tL6LK9/cJnxiT309fUSDlzNFrBYXFhlaHjwKudspVwu43a7rxll+tZb r2Kh8ORjD/O33/se4Z4Yq6tJEv0DZDI5vvj5zyOK129rOpbGuQszDA71Ew5tL5Wj4zhcvnSB oYkDuJUNIXZsi1Qm194DrKYyVBdXWXArBMIRHEHi/bffY9/RfUyducTX/+4v4N52n+FQTSep Cg5T04uUHRWvVWBmZp7puRCjIyNMTU5jutY40ndv5qW8Enolz/vvnSLY48YXHsABLs/OcPig h/ML8yzMLiCGoqjSxg9qamXGDt7PwskfMDXTy9pageFeDx6XQjpTxd3bS49XZXVhFkcSKeQN fu7nvoZ0HYK4tLREX19fc6vVKyEpEmgaRiXDwOhBjr/2HX7qq1/l2z98h0ePjGJYFq4bSMS7 dOEMyaJI8p13CMX7USULo1omGO1hZWmNnqBKUY7i1IrEgyoFQyYhl9B9E0hCu6mr16pkcvl2 BcisLfPgk59levIs6yuLVAUPe/ftxTQs4j3bF1LHsbk8PU1lbQVDDJGIevG7RIK+ftxrecI9 IebmFtg31E9Ouzu9TjdDen2daqVAuD/K+uIc6d4o/b19zKyk6AsHkD0RsqsLJPMVBiL1SFN3 MM76hxc5+tjT5ItVYuEcIa+MqLgQXEV6I37ymsPRBx4BHLLp1HXXa//+/ds6L+AJYAdcVHSJ UmaR577yc5w8c54v/NjjzK2so8o3tk7B3zdI8eyPIDyGt1xEFy2WFxeJFzPMr9YouTRygQlG QjA3t0LJcTF+3winLl3AL07gcSvEe+rJzSxDY+rShY/PC1TIZvCGo8gd5H1tZhLhy1++7muu /u7vYgyPbDl+aXKS/fv2dSwzpU2ybCxf133SZprL2uXrrt/58nkMZ+vG1Vfjtyb+Eb/0yN9r O5bJZIhGdzbEeVfiOMwvLjGcCLGUshjq37CdFmYmKdsqB/eMXvUSd6UbNJfLEQ53DclbgWEY nDhxoi0OqjEhdeDAgWuUvvO5I7xAt5qu8N86VldXt6RUcblcZDKZLWsZGrz9xsv0JEbZMz54 S43gnaA7D9DlqjR2sr8e3N4Aa2tJjEqekYnDTJ4/ydNPPsLM3AKjQzGMlsx6t5uuAnS5KrFY rBk42MBx6nukXSnTtD8Qoi8eQ3fc6NUiX/zyz3Jpeplnn3ka21Zu2AjeCW7aBthO3EyX3c3y 8nJbYi1d1wkEAs2Vc7uZW6IAjRVOXbrsNrpDoC73NNvyAjm2zp/98Z/w6MP38fqJC4i2iiBU +dLP/SLR3bt8oEuXbSqAo5FLF3nr9VcZPfZp3vjRWzz7qX0UNYuwInRM7NSly25gmzaAw8yl 84T6x1mZnWL/wX1cuDTH0SMHujZAl1vK4vRFzs2uMZrw4IuNoudNFCnPbLLMp594+Jbfb5s2 gMD4/sNEAx6OHD2Korg5emT3zwJ2ufP44OI0x3oNvvnuEpcvvMHM1AqBQJCZmdkduV/XCO5y RzESC/Gdl89wbO8AiUgMT9RPJpMmHNmZtc5dN2iXO4pLly51PO7xeBgeHr7l9+sqQJd7mu4Q qMs9TVcButzTdBWgyz1NVwG63NN0FaDLPU1XAbrc03QVoMs9zZZguNTMeXRXkILp4eBINxNB l7ubTT2Aw9SFk/z5t75HNNq+2mf+4kkmZ5b54feeZ3Fhnud/+Dp3zsrOLl1ujE09gMDEnn2c XX6fmaUMvQfquewd22By8hzZtQ8Y/bGn+be/9+f8va8/wFTKYG9E7IZDd9m1bBkCKW4PLsVL 0Ney0sXUERUf3kSCufff5Uuf/xTvzab48gMKolgX/G4oRJfdyBYF8IbjBIMhYuGN5KqC6uOZ z/9kxwt0G/4uu5k2G8Cxy/zZX73E0UGZM7PddOVd7n62RIOuLlxmOW/y0H3bW/DSjQbtspvZ Mg/gkWymz5/hR2+fvB316dLlY2WLDWBbBvl8AcOTvR316dLlY2VLD6BXSnjjg3zuU91Nl7vc /bQbwY5DsWrjVrppDrvcG7QpgCAIDI6OIpoayHdl5vQuXYD6LkbWyodbbYD86hz5Qo4XXjnB 3/nSE7ejbl12KU41h7V6GmnkcQRJud3V2YJjaljzb2NOv4SdnUdK3LdVAUKJUULBFJ986tYn Iepy9+LUClSf/22k3kPoJ/4DYrAfef/nkYYfu63KYFezWNOvYs68gqOXkUceQ33oFxGjY4DQ YR7g/Nu8cGIKObJnWz1Adx6gi6OXqX73H6F+4u8jDz4IgJ2dw5h8AWv+bcTQ4IYy3MDukNdV F8fByS9gXn4Rc/5tBNmDPPFjSONPIXq3Rje3KYDjOMxePMfc6jr3PfCJtnCIq92wqwD3Lo5R pfrd30J9+BeRhz/R8Rw7O4tx6ftYC+8ghoeR930eafjRW6YMjuPg5OYxp1/CnH8b0d+LPPEM 0sgTCIr7qmW39ADLH/6Ivz5X42eee6arAF2uimNq1J7/bZRjP4s89qltlbEy05iXvo+1+C5i eBR5/xeQhh5BEDfkx3EcZldzvHdxhafuH6X3o61g2+7t2NirpzEvv4S1egoxNLRtoW9lUw+g 860//yar6+t87Rd+lf6It3mzt1/5PovJNUqauCU9elcB7j0cS6f2vf8J5dBXkPc8c0PXsNKX P1KG9yC6h6nE13lnpsLMSpaxRIQj43G++9YkP/vMYY7t6QNLrxuxl1/Ezi0gJY4i73kGsf8Y gnBjixs39UEGsxc/JNzXz9n5XFMBwGYtVeDx+/czmZW66dHvdWwT7YV/grLvWRj9NKZp3tBl NO8QJ31f4rh9P5mpIocqazyR/SbfGIui7P8C0kAfxwYU/v1//GvOhQV+IngCZeRx5Id+CUL1 NIkOYFk2YN9QHbaVGtFxdN565U0Sew9Rza5106Pfwzi2Re0H/xR55HGUg1+G69wbLl+u8d6F Zd69sIxuWDywL8Fjhwbpjfg+2oPMwVqfxLz0t1hLJxC8UaTxp/huai+XVwr8g596FI/r1nmV urlBu2wbx7HRfvTPEfvuQ7nva9veGHE1U+L4uSVOTq3iUiQePTjIowcH2hddUZelZKnIdDbN bCbDWrnEgXgvn92zH1kUOT29xn968Qy/9tVHGYpfZ7Zox8Gu1TBXVzFWVjFXVjBWV7sK0GV7 OI6N9vK/QIyMo9z/jasKv+M4TC9nOX5+ifNzKeIhL48dHuSBvQlc6sao23YcVgp5prMZZrMZ aqZBnz/AeKSH8WgUn6JyJrnCG3MzfG7vAfb0xEjlKvybbx7ni4/v4/EjQ1vvresYySRmi5Bb mQw4DoLHg5JIICcSyP0JlP7+rgJ0uTaO46C99n8i+mIoD/1iR+Gv6SZnZ9Y4cXGFuWSeiYEI jx0e5NBoDOmj/YQt22axkGMmk2Eul8GwbPqDQSYiPYxFoniUzkObqmHwvUvnsW2bLx44jCyI /N9/+gqhWJivunJYKyuYySSOriMoKnKiDzmRQOlPICf6kXqiV1TYrgJ0uTqOg/bm/wWyG/UT /3VTkCzLZmopw4dTSc7PJLGWltgna9wfdzM+lkCQJJAkbEEgrVWZyeWYLxaI+HyMx+KM9sRx qSqCJIIk1d2gm/4tCAJWNtscsixMTmKUy4iiyPDoKG8nDvHOmQV+46cfIzIxgqiq1/14XQXo chUctOP/D5g60uH/gqV0idPLRc7MpchdmGREy3EkKLI/pODpiyPE48yaOrOZNPlKmeFAkPFQ mKjqRnQcHMsC28KxbLCsjz7bzb/NY5aNY9ePSZHIxpAlkcB2uXhxepLVYpGvHDrCeqrKH33v JL/ypQfZM3j9eay6CtAFAMe2sdJpzGQSYzWJmUxS1C9xZn6BU6Vj5GMDjOwf5ehAkCMxD8He KKLfjyAIFLQaxxfmmM6k2dcTZ0+0h8FQGFncucSDq8Uif3PhLAfjvRzp6efffutdPnl0mM88 NH5d1+kqwD2EY5qYa+uYybqAm6tJzLU1HMMAUcQIBLlYETlbEVgyDXr2TvDAkf3cvzdBPOxt G0c7wEIuy1vzs2imyWPDo+yPxbftGboV2I7D8YVZziRXeW7fIX741iw+t8JPP31k297ZrgLc Zdi1GubaWl24G4KeStWHGJKM3BtH7utD7utDjMeZ0WVOzae5MJ9GEgWOjPdyuPYGwyzi+fF/ 0haiAGDaNqdXlzmxtEiv3///t3emzXEc5x3/zbUzey+wwC5A3BdJgQdIUVYoK4pVtGWlVJas 2GVLsR3nTVKupCrJZ0ilUpUvkNep8gs7x6tEZadsi6RNkSIp2jwBggDBAwQBYrE4djHHzs7V eQESBlMGINJUSEb7r5rqZ2q7n+3u6X/3091Pz/BKdy8tyRRP8whV1a3xwfgY+WSSWgnmlyz+ 8msvoqnbt8kGAZ43CEFo2w/34qUS4UoFEEi6jloorNnNxSJasYjSkkdSFIQQ3C2vcmmqxOit BWr1gKHOZkYGi+zqbiGmKvjjHxDcOYPxxt8/5Ky20czZW2znUEcnhvrs+PwLIRgtzXPx3l2a ggznrszxN9/8A1qym/uzhWH0/4MAAnA8D7Pu0hRPEFOU/9OheD0fUQh+DeHbmI7HzYrM1FyV 6zNLeEFIb1uOvvYcvcU0HYUc6iZ1JoQgqlbXbfEHDT2yTBAgp5LrvbjathYqTU2/s8zLqzUu 3yhx6cY8ixWHjtYMI4Nt7OsvkIo/vGriT/6MYOooxpv/iKRoCCGYqVYeMnOGWlqRn0Ldflos 2jb/NT5KLNQYu7TMd76yj339xYfiCCG4ervMj4+OPl8EEIDr+yxYJqX716JjE0YRhqqR0DRs 38cLf+ubosoyqZi+duk6qViMtL52n5YFuvDAdxCeg/Bt8ByE79wP7Q3ySvjy2AAACclJREFU Whx8G+HXQDzwPZFwvJCb8xY3nQy3/Dbs9BCZQhcDBYP+pEmfsYIW1ZitJZm2dG5XZeZWBf5q mXwipCfl0ZNw6AzK6Isl/LklRBRDae1C692F1ruLWO9u5Hzbtk5ftbrP6K0yl6bmmS5VyaUM RgaKjAwWackmNu0Y/BvHCcY/wPjjfyKU1ftmzgyFVPqZMHMeBUIIzt29w+nb09wat3l9uI+v v7oLSZJYqjr88OeXMTSF776x/+kSwKquMHH1CjEpQJd8YpK/JvNbOYxCbK9OybIoWSaWVyem qLQkkxRTaVoTyfWNFhEF6415LbTx6xa261APAmRJIqaq6IqCpqiESgwHjZUAlgOoBhKBaqDo SYx4lpiRRtVTqEYaTU+h6ilkLYXnGcyUTKZml5mfX0JxbXYWs+xszzJUzJCJyYggAN9H+AHC 94lME79UIlwoIwIfJBkln8fq6GG+2M0dM+DWfAVzcQ7NukN3OqQnG9Gbg2IiQHIrCM966F2U kmYQGXluqsOMen1MTC8gL0+yZ6Cdg3t309Pbg2yktyVNcPsU/uV/wz/yD5ydn39mzZxHhVl3 +WB8jJPn79KfbKW3LceVmwv82Vf3M3h/yfSxCBAFLmMTv78z3GLV5uiZa9yrVJmvVKlaNQgF SVnFkBQIIoTvQlSHyAfhIwkfCJEU0DQFXVOIqQq6JqPrMfREGt1IousJ9FicmKITEwIt8NA8 F82ro3kuqueu36tefa2RhgGO51ELfIIoQiAz60TMijizahon10KmtYVuqU6PsOkObdJSQKQo hIpCIMsEsownS3hAXZLwpLXQ1lTMTBo3l0P8zsmZhCpLKLJMEAjmyialRZtKpY7kyxRTaXoK OYr5JKmUhmn6XLsxy63lKm1tWQ52p9gl30T3llHqq2uXt4riO+iKjKaoKLKErMWRjBxSvAkp nkNEAXMTJzj7wg/wpNhzYeY8CoQQjJcX+NHHF1FCmSMH+9FVBU1R1kzlxyHAiWM/R1cC2g58 lc6URBiGyA+2u8NwnQwb5SiK1uM8kO3bt1n6138nbhhIsoyQQFZVkGUEoKgaQpbWZE1DSA/L vqQQxnQ8WaUuq4S6gafpeKpGqMaoI1OPBAEyrh/g1gOCUOB6Pq4X4IcCt+7j+QHShjVrWZYJ owhFgr4dzQy05xjsaKa1Kbl2+kgIZFledwGXJOmR5SiKkCRpXeb+714YEEaCCIEXBERCEIo1 2XVClisuM6UqhXySbD5GIEJCEREJQf2h+D7hhrRrcoTwasRDm1hgo7hVYlEN0fUKB7uHKKQz SJs8q63kzZ7505A3+73meSw49lo9+h4h4IXh4xHgyrmTXBib4q33/5x840BMA88xnqtJcAMN PGk8kVPJQgiCIHh4p1CI9fuN8v9Ot9mqxGbpP22aT6PrcfK20Yx5lHJuTPNZlfNx9D1tXZ+F vu3ib8TvPQJs9mcP7OQngY325rOk60nr+7zkbeP850npe9y8fSYEaKCB5wVPxASavTXJ5euz xEKLbKGThVWLPV0tXL2zyEv9Bc6MXWffgZc5c/Ik77/3jS11Xb96kdsLKzjlEv3DB6lUTQaK OhNl6Ex5TNy+x/CeF5g3A764f+uPeEyMnmemXMFcLLNz7wEqVZvuZolbFYOCYTM1s0B/fy8z c2Xe/PKXti5k6PPxR8cxPbCcgOG+VtTmPuaufkz/oSNMXzmFK6cppkIs8rxyaHjrOrt9nQvX 72DUq+Q6dlJdWeblkQGOnZvii3t2cPrCNUZeeomPTp3le996d+u8BS6/On4MBx3Pi+hvMcj2 DHDml2d5852vceHULxCJFmR/lRcPv07a2OKx+zWOH/uQmpwkCAQ9GYmWXcOc/MVp3vqTd/j1 if9GTreRFKuo2S4O7BnaMmuV8hxHz1ykkFSRU3mcpUX6O1qZdgSv7e3iJ8fO0dPVyfTUNb70 zrdo0rfoyYXg/CcnWalUKa14HD68j+oqzN24xIuvfYW7kxeRsh0oi9dQB19nX0d6c13A1Pjl J0OAmmPRWiyyWA6orlgkkiqqqmJWTaanPYb3DnL8Jz9lqebgBrBV/VuWRSGbYMHNY7oemvC4 cHGS5TCLyEkMdeTwY1k8b3bbfFmWRT5lIOpN2L5ACetcunSdqlTEz4T0FtPMLCzT2taxrS6B wHR81FAml5ZINLWyvDzL2NgEescIVj1CUi1UJYdZqWyrz3Vsiq3NVO7BanWZpK5w4TcXuTdb ZS7ns2uwjw+PHmd+uUrND4lrmy8yCARWXaARkIwLsrkmbCcgrphM3SvjhjJSbZW2Qg4/3HrA F5LAqsvElICYIWjOFbCdCF2qcLO0TD1SkewKUegwPLx9vfn1GrnmAnVzBclcIptNYWQzTP7m FPtbfIqDI8zduYoWWKzWwi0JIADTNIm5UCzoyE07qM9NkskYXL46gXBsmlpjXLs8SiY+vC0B bNt6MgQw4kmCFZfhvh7imQxjVyeoOh5f+MIhetubOXPiV7z1/nvEhbdl4wdIJlPU5CTd3Sma m3OMX7d44933qVk2CR1OnPqE3swSarT9azCSyRS+lqUrmaU5l2TCrPLmN76LY9eIqyEfnT5P f2eRZcfdvpACMtk0O3oGcRwX36oiqQn+4q/+mlDWsZoEE7NLCFnixYN7t1WnJxIEjsvQUCep XDNjo+McfO0NRjyXTMrg9KmTvP3214lJwZaNH9Y2h7PZFD0DO3EcD8dZIghdOgb2sq+3jUWt xnTZJqqvsrS0SHOyfXNdEeRyKfoGd+K4Pqa5gHBsuoYOsKerhRYxwOxKDalWwXVs2OblaWrM QIkCdu0dRDYyTI2N4gYyrx5+lfzgAPPnT5PtG8BsKdCV3b45ptJpmnb245gmyuIMkqHRnGzn wK4RhFVmZsnkOz/4O8xw+x3sRDLZmAM08PlG4yMADTwzuHTmBGM373LoD4+QNSSW7s2Qye/A XJjgk2mJlwdzZFva0DSNyKngSzL/8Z9HefeP9vPJ2BSDI4cpanU+PDvKay+9QCLdRKTojJ35 JSuewuGXhnFrFmcv3uPwgR66hoYbI0ADzw5+/MN/oavJ4KeTLjvbgNIUp67Vee9PjzBflRj/ 6ATxfJq3v/19Jn59AoSHL+fIilU6+9v55x8dY0dhkN4dGrO3rpCPJ+k58j1WJ8+i+DXchE65 NE9Hy06uXT3Fu9//2wYBGnh24NdW+dmHJ9j9wm5CVUeylxBqmp7BPqZv3MR3KsRzbfT2dlK+ cwOSeaQwoLU5xYXLE3R1tqFKITNlhwQOip6ivbuf5ZlJTGEQFy5SPINrm0R1i0Lv7gYBGvh8 47M7tt9AA88BGgRo4HON/wFl1CP9cUYlkQAAAABJRU5ErkJggg== </thumbnail> <thumbnail height='192' name='QN 1' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO29Z3Bc55nv+evTOaHRQKORQeRAECACcybFIEpXVirZMw4ax/G6aspzt6Z2 Z6em5q53turW1L27s+s7691re2zLki3bkqxERZJiJsEIEEQgcg6N1AAanbvPOfuBEiUKFAii STZEnN8nEDznOe/bOP8+533eJ6hkWZZRUFihCPEegIJCPFEEoLCiUQSgsKJRBKCwolEEoLCi UQSgsKJRBKCwotF88oOyHaCwErkpgHA4jN/vj+dYHgg+nw+z2Xzz358IX6VSLdnmvbAhiiJq tXrJ598rGz5/ELVGc+cDF0CSJEwGXUw27sVcJElCEBZ+ybk5U71ej16vB6Cp7jQpq9eRZjPe cnA0OMfQpIfUZAdGoz6mwcmSyMzMDOYEOzrNg30Ts9vtN38WRREgpg9bkiRkWY7JRiQSQavV Lvn8e2Xjv7z6Ea19EzHZSLIa+c0/PBmTjVjnIssyoiiiuYOY5/+vFORqw1kMcyZW20P0jHup yM+gpW+A0sJcWnp6sRnSsWqn8evSsas8dA/NsHlTORfr2ygvyaG1a5S1JelcaRvh4CM70d7m Bq8/8S4DQRMbN6yHkA9HagqzE1MIJgtaKUAYHWa9DpVKJipG8HgCaASJhCQns1NjWO0OwkEf OoMVkyG2P7rCymWeAKYHrtM+BerpM0iZDsqz4Z0PR9j5lW1cqDuLJdmGa2iIAd8YXSNNFK9K ocAs8NJ7p3j+q8/y6i/+FU1iFnohgGt4Gl9UJPE2Ahjon+GRbz1BV91hxkMSvvo5XK1edHYd msAISWs2ow8EMKrDDM+MILp82EpycA14qG9uZOPWrYyOT/LD735HEYDCkpkngJDKyo//9j8y 1d/GuSMf0eVYS0XqEBcut3Jg934CAQ+RLBVjg2oyi52kJpmwayHVZKTu5Cl273uMtv5xsjPT mPGC9gvewWo2lvL2q6+Sl5nK5Fg/q0qKSdSokaJudBoTLcOjpApeplRWHGlZpDs0mFcXQqCd 6io1a0sLSM8tJNlquO8fksLDi2qhaFCf14vJbCHs96I2WnjAr+r3henpaWUNsAD//a3L9I7O xGQjwaTjH5/fEZON+K0BPoPZYgFAb7YseSAKXy6+e7ASnS42D04kErlHo7n/xObvUnjokK/+ lsB0X2w2JInoHdyPD8aGTERY2DUdNwFMDbZz+GwjW/ccJMdpXfR5shih3zVBbmbGfRzdykXs O4M4fCXew3hgxE0Ap49d4LGvf4vwUCsvv9xAcdVamo9dIb/YxsBUlKKSQvrbW0jOKWe6/wKr 126n/vJ5HCmpfHD2Mt/76mOcv9DI9oPPUJqdHK9pKHzJiZsA7Ik6Ojq6mexqo7iijK7WBowJ qzBL/WSsWk3j5Utk5JUzONCFRqXHoRplYGoOv2xhzeoSJrsamQ7feFQqKCyVuAlg++NP09zU zObd++jt7OIrX3mOwGyEkZYJfFEdz3/7O/R3tLJxw+OoIl6SEswcfCSVrMxMvG4XCc4MbF2d pCUnxGsKCg8BC7pBH0YUN+jCBMe70BKbF2dZxDXJIEp3tqF4gRRuQfJriIqxeV9EMYqsju3W it2GjCRKyF8kABXo8/PjJ4CZqTHMiSlMTYyTlpZ2x+N7264hW9LJTU+gpb2PNJsW0eQkza7s UdxL5l54kVBbW7yHcf9Rq8n5/UvxE0DD2Q9Zs/c53nnnfR7dtZ5pOQG7PsLQ0ARqjYqisnLa m65SvHYD6slGznQEUbsu0p+t40S/DvXgRbbtfgLfmkomu1rJLy2l9XoPW7dtRLP0qGSFFUbc BBD2zfLuW28x5pnh1PlWomKQoFZFqSlA2F7Ky7/4DW4xzGQkgbUWFxn5G9H4upHMDjZuKsdt CmDXhTlx7DCVNVs59s4fmJwNkZC7mursxe8rKKxs4iaA7OIqNq/ZyJVz55ACk0yJ6eSlWMgy RRETsrEKOjr7e8nLSSEzu5CLr72JlJDN7lwnLk0iSUXFOJITWJ+cQWvjBXKLqpFGJ0hPUCJD FRaP4gVSvEC3MPPmW4hjYzHZkCUJ1T0IhYjJhgyyvIANQSD5B99XvEAKt2J67OA9CYaLt5jv STSowsrjrevNjPl9MdmQZfmu8qO3rsqjOiMrpmsulbgJ4PKx9+lxh9h14FGct0lq+eCDw1gM IdZseoK6Q7/CE4KMykfZXpl5y3E9fT3k5+Y/qGE/9EwFAwzOxpYPcLfMhUIP9HqfJW4CUGtU hCUVQxdP8F5fH9Mk4nQkYnB30B5IJD/ZgBwKIsrgmZ0miJFoZJyzx2eIhsbp6qincMvjeCfa uHDmBK6ZCLVl6Rx6/yR79++moX2CPRUpnO7w8MPnv4rFoDzsFOYTtxwvoy0J9dwALV2j1NRU kpxbQcQ/Tt/4NFLQfcuxgkaLMy2J8aExmq+eZ2DEjcNh5XJ9A945D5LWQlFmCsPjExRX1pKS 5CQy0YkraGC6txWXJxinWSosd+L2tZhfUkFabhkWox4EFSWyAFIhkXAIlUaLRlCjUslotPDE V7+HPxghIdFGYG4Ord5ANBxkn86AWgBkFSoVqAUVnjkvJpOJvMISTEY9OzZtIMFmvuN4FFYm N92gwWCQQCAQ7/Hcd7xeLxbLp+ET0sfh1HcqoLQQ98LGsgggA6Ifu3RjYTEFqT6LWhAQPrdo jnUusiwjSdLig+EMBgMGw8qosKDsA3wxDZ2jzHpjW5QuBzHLfCwA4S6jQWeHW/jT+5ewO7NY X5lPzqq8m+qM+t2caR1m17qKuxrMqaMn2bF35y2/C/tnOHHiLGu37CE10fgFZyo8aF453hpz ZbgvE/MEEPbP4J71ojF46evtpK3lCrMTExRWb6bpymWCZgc9V05gyqpAnrxGceFqzrYM89xz X0Pr6eHFVz5g05aN9HT3Ynfm4J3op3t4bp4Ajr99iNJ9T2GMzvDO20ep2bqJtnOX0KfnYo1O EDA6SU0woVFJeP1uOjtdmI2Qu2YDPY0XyC2rZGy4l9zSGjKTldgfhaVx20Vwdn4xXtcQY+Ma osDmMienW1pwZBcxNNJN7+g0W8osuD1WSooKOFd3ns6hadSdVwmHAvT2DpG3Zi3D5y/gNjlI tkbnXSMiSuh0Wi6drKOstoqPPnwLbXQVqqlGLBaZkCnE1ICETg4yEfKQLWmxlK7mnd/+lnHB yCZZxcBMhM1blHBohaUzLxYoGvLR2dVLojMLsw4kwKRVEUbH2PAQic40QrMTyPpELAYBs0FL V88gqwqLIOhhZMKDIykRrV5PJBTBOzuOpE0gOyPllgv7pl0cO3WBsvJympuaqNq8kcBEGFny 4vOM4VEnYgyOE1Qnkuo0Y5PV6NKdjA1O09vVRH7ZGtAZWVOQc1cTVmKBFuYffhF7cdwvE0ow nCKAW/jocheeQGwpkZIoIahj22KK2YYMknwX5dE/YW68mzc/PI8jq5C1JZmkpWfeXASLgVka esdZt7po6QNTWNZsr8xZ2cFwwVkXY9M+oqoRbDo/PZ3NjI+MU7FxK5dOH2POnIG7rxWdIw// 8FXy1+6jND99yQNVWF5E3/1bQiMNMdu5F3vvD2L//rbyqKjdzEjLJQaH5ojKsDnfxLFTJ6is 3UnD5WMcbRhlx75U3L4wB/PunM97O1rrDnOxe5o9+x8jM9mEIAjIkgyqG+oVBAHpk5jwj9/S JElCJYY523idbetrkD/ecImlM4vC54j4IeyN9ygeGPMEkJBeitR2hnW795FsurEItpvUPFls oqX+CnsPPMPm8nZEaxrVRZlLvvna2sZ49vlvMnD5OC8fHSLBkUjT0XaqqoyMhJMwmzT4Z31o E1Nw95zl0YPP8rN/+2+UrdtFz9AQEVcrv/rD+3z/7/8ze6pyY/wYFFYq8wSgtyRz8In57W3M wK5HHrnxjwxnzBcur8jijT+9SpYjAVmSMRhMVG3cTqqhmZ4RkaxEB6E5H0aDgfyyalI0s5Rs fZRUqxWNFEBvTmTv409RkG6/88UUFL6A23qBPO4p9NZE9NrYtrOXwlD7ZQzZ63CY7o99xQu0 MIF3/g7R1RSTDZCBWF9LH4yN+QKQRf79v/4j6Tu/x57VybhmQtgN4Jf1qEIeDIlOQrPjCOZk RO8kGmsKkm8KtTkZrRwiHPAzMhcl3SogmJKRA26i2gTSHYkxTubeoAhgYcLh8Ar3Ak314tak M33+NLOdAjWbd/D20SOsX1fFC7/8I3m1GxDHB1i9cy/NRz5g7c7NdHbOoFLPIc642LXvII3N rbx8+QrOwloS/F1k1TxG+vaaJU9G4cHhPXYcYSa2jLC7jQa9bzZkeV6U6eeZJ4DRUTdbdu5l sr8Dsx76hiZINBuZ8kH52nKKysuYTlAx7nKRV5KPayaIWeVBm5yFPTOdvOx0eqc8CKuD5JSV EhlTM+Qan3fhrpbLpBWtpbm+gU2bNiw8EzHEh+++i5SQwZ6aPD680EW2OYAmcRU5eauwGWP7 xlL4lMj5CyujMtzHxG0n+PCffsasKZee7iG2lKczJdlIMUdxDYygMpgoLK2gr+0a+VXbSfY2 0BgtR9N6BLcmTIc/hXD7aR45+BT21FQ6WlopKSmi/Xob2x9/hlTzFz/2lFeghRn7yT+vKAHE LSNMYzCzbsMGpkb7GBwPI4sDTBi01CTLRBx5nH77bSbVJpz5c2RaLHj6p9GERErKCnCYK5k0 h0jSRbhw5Qrrt+7n2ge/IWjOwDMXJFXpaaawSOImgDXrd2FLTmL/3scgMMWUnEiKTYdNKyHp bax6/nnami/jdCZhTy+gzH0KafsBipx60gUbIdNWEkwGMsoNXLtwnt1PfpP6K1dx2FZGUo/C vUEJhlNegW4h2N6O7I2tLpAoiXfMxLrfNmT4OCPsLoPhFFY2oewsVLHmFUejd3Q/3ncb8o0v N0mzTBtkRII+RidmyMhMR3MblXq9XgSVjN5oxTszztRsgKzsHHRK7fP7yh+artI77b7zgQ8J cRPAkT+/hnFVCRqdHv/cNDqtDqMtmYhnHIxJnDp2GJshyIb9z3Pi3Vdxpji42udj/7o8ZFnE PzeFpLPhGukhJz0dty9CXqaD7r5R8nIz6O0dJDMzjeHRCfLz89DGGJ+u8HASNwGs276J9z44 gbe/C8Gio9NnwyJPYfCO0jyloqrg01qR0VCAgUkvqblT1J0MEg2OMjx8nezavcyMNNNwpR5R VFGnD9PTNUT1+nU0d0+wvdzJ+Y4Z/vo72SSalL0ChfnETQAulwutQY81KZXswnQ0HgvydDuT ES9lhUmkOJKx6MJoBEh2pOIOyOiNifQ2XyIxfRV5Bbm4JsdIT0klyaHDrFUjCBE0pnQKcvOY GB5F1DuxyqPMBaOKABRui+IFUrxAt/BmcyNTwdgKpN1tdeh42lAqwymV4W7hXgTDLYe5LLky nCxJhEIh1Fod2s+5kGRJQoI7+laXO8oT4Iv5/ZFrDI577uqcHz+7EZPh0+suh7ksORp0sruO lz5sQ6fR8YPvPEcoLGIx6vD4AvgHr9MRSGFLVTahgB+t3kDA78dqs+HzzGK0JBDye9GbzIT8 XrQGCwbd7Qcw1tPMRxda2fbIQXKcSmGr5UJz78Rdl0X50VPrgC9nb7bb3p3hUACrLZE3XvsD Yc8ckj0dmzaMFBCoaz6CMbSd9sEp1hY6efHff8GGp/+KS8fP8uxXtvDrX/+RDbsOMNzZzBPf +AG1Jbfv/FF3up7Hv/4t/H1N/P5IIwVrymk7eRVDVgbm4BiWgkrMkoheHWF8ZpTBjjESnBYS 00povXKW4rW1DPZ3cfCJ58hyKAJSWBrzBKDWGjAa9KhlmQSTiZG5KKscVlyjLjKd2WyqNuIJ iUhhP4MDo2zYsR1UJoqyTbimQtRu2EpNZRnW6Ci9PaNfKACHw0jj1Wv4RrvJKchloKcNqyMP cW4cvU1LY1MzmUYBSZKRTVCWmkTCujWc/vNxXCEVVRoJY2qBcvMrxETcvECyGKG7q5vUrGxG BodYVZBLyBdBlqP4PVNIhkTUYQ+ixozFpEWLCrXRQDAg4h4fxJKUik6nI9F6d7X/FS/Qwiyl MtyL//gUNvOnQYjLYS6LXQMoblBFALcwOjkLqrtzcjjt5lscI8thLkqXSIUlkaQNorelxnsY D4y4+TOlSICzJ48zNRe/DoEK8xHGr8V7CA+UuAngxNuvY89bjU7ycfiDw8wGvLRebqClpYnD R47j9vo5f/IjBsZn6e1spLurm/ffeYeO61f5u3/6Z4bHxjl6+CO8ofml1xUUFkvcBDDni5Lm dHDl7CkKKgp5+40/cvR4G8HBelKysvj9r3+OT5fKR0fe49D775Oo9TE0PsLJC+1Ur6ul99zb tHR10tw9Gq8pKDwExG0NsHPfdo4cepOykiKunLlIzebdhCYkxImTnL/YyP7Hn6St4RIlq6vR SnkY9Dqs9jRyMrKYdvWSXFxLaribDIctXlNQeAhYdl4g7/QYaksqxvu0sah4gRZGnGhHnVIS 93GsWC+Qxb5yPBDLEdGWx4MviBk/lp0AFOYj+XyM/a8/ueNxsgyxVoq3fv/76EpjewJ8mYib AOqOvk7J1sc58vbbfO1rzy14bNTr4jd/eA+0Zp7eW86bF8dIEwfJKKwlp6gIh+XhLoUiixKR oeEHc63QynJLx00Anolh3n7zDYZHJ/njC79gSjSTaI4SdA0hJ6ThSEzh6OFD7Hzub9hg7aF0 x1Oor77NeydOMx5xMtDWyBZjEi73OOOjkzhMEQ69d5wf/fN/oyrj7sIjFFYucXOD6sw2Hn/y SVITtIRCYcKhICHBQPXqbCqqa5gdnyKntJbi7GRSCypp+OgN6idEtlQUsmnzNtbUrCczyYgv 4AdBTSAQZt323aQYvty5CgoPlrh5gSRJQqVSIUkyICGjQlCpUAGySgWyjCSKqNRq1IKAGI2C SkAQQL7RR+nmsVI0iqBW31z1L5QG92X0Aolzcwz/8EdLtn032P+X/xlrZWVMNr5MXqBl5wa9 33wZBfAgbay0/gDK+4LCLXS7p+I9hAdK3AQw3t/BO+8exhO8fVPmtvZ2ertbCUSh+eJxXn/9 DUam5yfte+buLn9VYWEax1ZWaEncvECXz5zDsWYjs/2dnGxrRzBYcKTnoPEM4dWlMNrbhs0Q JCFjNe0dbWSkp1Hf3EEwzYkU9TE51o02pQivuw+TRs3AZIDttaXUXWqipqacyw1tVJfn0dA2 xIG9ezDpV9L2jsJiiZsANh94lAtHD9E2raZqfTEN7gQmmi+Ab5ruyTDl+atuOV6fkEBgeIAO d5CQ34Wg9iKGjIRmhwhHddgMWl554zXM1hS6uvuYmBinu0/L+OgIM4EwJr0xTjNVWM7ETQAz EyOEravYU5uHyWZG59RDQMvkYB/5lU5SE63oNVFMWigpKaN9wM2mHbu5fv4MOWUlhGYHwObE nudAkjXo1QIbNlZTd7mVnOxsPLN+sjIz8fqjWPTKhrfC7VG8QIoX6Bauu0YpS0uP+zgeeDDc SqoM91mUynC3kqQSmJ6ejvs44lcZTpZpuXwGMSENu85KTl7azYMlUQRBmNd6sqv5EnOaFKpL c+9qgJFIBI1GiyA82Jr/yhPgi/nHX35Ey11WhfgyM+/5MNZ2ga45K/vXGPnVf32V2v+wl3SD n64pmWzTHFFbLgHPLEaCeLCxuaaMk+cbMZnNdyWApjPv0zQaYseuPdj0KsxWM0GfH5VWhyBH EVGj06hRAZIkEgxFbjTMMFluVJ8zmIhGw2i0+nklHBWWjiTfiCpdKcwTQMgfxJKQgk6rIymz gMGmBmZNUFfXxZZ9ufgG3SQXbGSi8yRBQwaynIfaP0PvxBwjnhAZCfpFXbira4onnv8mvRc+ 4sL4DGqdQP8VF/oUKxpvP87qXegDfozqMMPTw3j7Z0gszmBuWsWZcyfYsmcfY+Nj/OC73yc1 0XSvPxeFFcI8AeSs3UTXkSM0XF/FmqoiwId/ZpTarRvJzXMQkU04M1MY9qTiCuoBDVl5+aTq LNxN96K1NXm89adXyUlLIuD1k1mQS+naDKToJMZsAw3dvWTqAoyrrCSlplJqz8K6ppjG062s 27Sd2tUFDK8qUG5+hZhQvEDKGuAWfvraebqGY1sE35PMnAdkY54AZDHE8cOHsWavQh82UllT dPP/5qYn0FiSMWpv7+2QomFmfQHstuWbqK4I4P6zHOay5JzgwcbzSI4yqkut/Nv//jKD7o0U p2q41jNLWbYWv9rGxJQPTdSDe2YOtSiycccOLtXVke5M4s2TF/mL/bsY9oTYv2cXOmV9+qUi cOh/RHTFVhxLRiZEjN1d7oGNxTBPADqDDu+Yj0jEQEZ+Ob7hfhr6PTQ2DmM+WIgvYiO3Yjtt F45g1IcpsMPxY/VMT/UQUjtYX1uDTggxPNBPIBxFZ7y9AjsuH6eufZzd+x67q/4AUiTIxZYO NlXFFrOucHvkgBvZOxa7nXsxlntg407MuztTyzaS7z1D+4CJTdsrgBCB2VHSitZRWGgnKuux JVlJ2rQJjVrCqpWxl6jp6EqgtLSSge5rCEY7ufk6TAt8/Tc3DfHM899kuOEUv/2wF0dmKo2H W6isMjMcSMBuNzM7MYXRkclU9xn2HXiW//en/0r5pkdo7+0jMNzCz198i7/+h39hT1XuffyI FB5m5glApRKo3LDjc7/NpfRzv7Hlfhqslgjk5Nz4d1bGLgDK7nDhktJUXv/jq6QnfZq/u7p6 M6mW6/R4oug/8+6Wmb+aZMbJ33KARLOJgvQkBI2evU88Q0G6/XbmFRQWxbLzAg201GHI3Yzz PuW1K4vghfG98SOkGNcAyBDz6/u9sLEIlp0A7jeKABZmpaVEKnHCCrcQOFdHYHY2JhuSJMUU GHivbMiShOoONuImgN72qzjzy2m71kxtbfXCB0thjn/4AZIti+2VORy92EG2NYLatoqcVZlY 9PH3fT8sBE+cJNTWFu9hPDDiJoCua+dpG52l5Vo7kTkXU5KNFHOUkf4RBIOBorJKelquUlCz A7unAX9yBZr2Y7w9eJE2r4O6jjPsPfAkIhG6m1soKSvmemsbOx/7Cslf4HpVUPg8cbtTBI2W rOwcetqa6Bn2IYuTjOg1VNvCRBxFHPvz67g1JmzZblKsOoJTATRRmYKyApIslUxawiQZoly4 eIH1W/dTf/gFggYnkzNBko2WOw9AQYE4CmB17U7sGdnodu+HwBRTciLORD12nYRosJP1l39B W8tV0tOSSc4oJHf8ONL6XRRnGJkVEgjpNmIzG3iipIZrFy+w7dGv0tjYTIptcdGoCgqgeIEU L9Dn8NTXow4EY7KxHDLCQP54Ib3IjDAFBQD16jI0mhidCtHoHd2P99+G/LGIbthQqVTobiOo uAkgGgkxO+cnMTER9W1SIoPBICoVaHUGQj4P3kAYe3IymgecPrnSeKmxnt5pd7yHcc/JsCbw t1t3zvt93ATw0Z9fQUzOorq6CsIB1BoNepMV0T8LeguHP3gPmyHIhv3Pc+y1F7DaEgkmbeDA +nxAJBSYQ9KYGB7uYVVmFt5AlNRkG6PjbtKcybjGJ3Ak2ZmcniUtLU0RjsJtiZsAKtZV8eHx C1ydGsWvitIbTMSm8aOb6aN5WkdtUdbNY6VomAlPkIy0Kc4c8xMNjtLfd428TY8xM9LIxXN1 BMOQZIP6+ja27tzG1fZx9qx1crptlr/5/rewmZS9AoX5xE0Ak243Gq0KjdFGZUkWeo8F2X2d yUACpfl27Il2LIYQahXYEpOYjQgIKiMDffXY0nMoKM5jcHiAzKQkrDY9Vp0aWRVG1qdSmJfH SG8/YV0q5sgAM4GwIgCF26J4gRQv0C282drEiCe2UAhZlhfs0RAPGw6zha9WVM075qYAVlJh LIvl040ypTDWvWc5zGXJhbFWAsoT4It57UQrw5OxlZyXJBlBULFxdRabVmfd+YTbELdoUP9U Py+9eoS1m7azfk0BN3oSSUjyjfBsQRA+o04VIFN39iSbtuxElkUEQf3xo0dYsOLb1GA7h882 snXPwbtKiVS4v1zpGKX1HlWGcyaalyyAB8U8AQy3dVCx83E25MDPfvlb9EYTmhkXw94AzmQ9 yam5uGY9pKk1CMWbYLqF5hOn0KpFfvaz37Bh9+NMTo7y7e9+n1XOL64OcfrYBR77+rcID7Xy 8ssNFFetpe1kPcbMLCyRCYw5pZiR0QtRJmdH6e8cx5psxJFdTnfTZfLK1tDX08Heg0+T5VAE pLA05gkge3UZp9/4ENVsEXq1Cr3BiD0zH4dOxapsC21dE/j9YRIKMmi5WofdmUR1TTmyoKN2 82421xTTPblqwZsfwJ6oo6Ojm8muNkoqyuhsbcBoy0GcHkdIlGlubSXNoAUxQlgvUZxkJaF2 DSdfOUJfSCavMIAmOUe5+RVi4q69QGP9nYStmWQnxVaRTYqGaL7WTE5hEb2dXZRUlBGYDSPL YeamxxCNDrQhN1FtAjarHr2sQm0x4fdFGRvsxJaWg96gJyUx4a6uq3iBFuYffvHRPXsF+os9 5fzl3oolnat0ibxPKAJYmP7RKUQ5tkysqBhFo9ZgtxqwW5fWmSdui2B3Xz2/e+8yqdkFfPWJ R27mJYuRIINjU+RmZQJw5M0P2PnUo3xR9ui186ewFNWSn6x0bf8ykSpMopVv37hwsYiyiFpQ gw9E39JsyKKIGIsblBtVxcUFokFVRvv8J8BE51lePd2PwaBipq0BT2IxRYYABes2MeMepr3H hcWYhMY3wVxUoKg0lffe+Yh9j+2ja0JmXYaaVz6s4+Durai0AteuD/GDH34Pu+HWgUjREI1X r5G3ei2JptiSsO8G5QmwMP5X/gpx+EpMNr4saFY/efs2qZm5xXz9mYPIGis1FaVozClUl+YQ CPjw+oNI0Qh6SwprV2Uy4p6hfP0WkvQyFRu209vXRWaKAX9IxJSYhHewmUH3/BwcBrQAABMS SURBVPjy0+++gWROhrCPM6fOMBf009XcSmdnB2fOnmfWH+TqxXOMTnkZ6mtjoH+Ak8eO09fV wn/6l/+Tsakpzp45hz8s3vcPSuHhZX5xXElEklWo1QLhUBARAa0goNaoEQMzHK/vYufGagQ+ LryrUhEMBtHr9agENVI0TFSS0Wo0gEwoFMFoMs7rKvPmC79l1zeep+n4OyQXFHL1ch1jPRq2 rBWRM9Zz5exxiiq2MjzUiWe8m7986nFeee8kemMKgllPsW6aut45tu9/ls3l2YuesPIEWJiV 9gSYXxlOUPPJn1Gnv3VnWGOys2/b+nmGzOZP3/PVOj2f/RN8UXLF9r2b+eD11ygrzKfxQj2r 122lMEtGNXOGCw0t7HpkP+2NV8gvrECXn4FRq8buzCErPYPp0V7seZVkBvrIcNydF0hB4bMs Oy/Q7MQQmsQszPcpeFN5AixM8OK/w8xATDYkWUJQxVgXKEYbMjKyLC9oQ51RvfxSIm0py3vr /GFHqHpeqQynsHKZ+fVvkIaGY7Jxv8OhVRoNqT/5TzHZ/4S4CeDSiUMUbtzP8fff55lnnlrw WNE/wYt/fBf0Vp7avZo3L46SLo/gzF1LTlERDsvKiGJ9EMiuMcJdXfEexsLcwy44cROAe7SP t958g+HRKf78u18xKVqwW6L4RoaRrSmkpqRz5vhhNn/le1QZOynY8gTqq4d45/gJRsNOetuu sN2QhHvOzcigizSbmsMfneHbf/+fWZOmNM5TWByxrVRiQGe28fiTT5KaoMEXiBIK+JgTNawt SaN8bRXjfUMkZBSS7bSSsqqM5jMf0uSOsrG8kE2bt7GmZj1pNi1T0zPozQnMTLspXluLTcl8 VLgL4uYFioRDqLU6wqEwyFGishqtRoVaBajUyJJMwO9DZ7Jg0Gnwez2g0WPQCIgqNXI0ciMD SxDwz81hMJnw+XxYbYkLVoBQvEALM/aTf17+xXG1WnJe+u2ChyjBcF+AIoCFCfn9H29iLp3o PSiMtZANFaC6g6dK8QIpLIl+vxdvOByTjbvN5y13pt3SEgtuVHITHkDL1/gtgkd6Od/YzY49 u7Do5w+ju7sHnTpKSlYxfdfOcH3AzdZHHsVpvVX5gWAAo2FpIbcK8znW3fnAK8P9/Y498wTw oIibAM4ePU72hp1MD3Zzqr0DrcFMckYuuPsIGtMZ6Gy6URkutZjrba0U5GZx7nIrNbkZSFE/ k2PdCEn5eKZ6SDQaGZgIsH1dCWfON7FhwxrOX2qmpqKIhtY+9j6ye8GOlQorl7gJYMfjj3Hi vTdp8utZU1NIgzuB4YYzqINzdI7Xszov5+axYjTMbATwjXC9KUzI70KSZ1EHjfjdwwxEtNgM On7/6iuYzXaamjW4xifo6hJwjU4wF4goAlC4LXETwMToIJItm801eViTrQgOA/hUTA71kV6c QprdhkETxaiBwsISukdmqd66g7bzZ0krKCLqHUa0WsnPqEKSNejVAjU15Vxs7GRVTg5zHj8p qRlMeyLotHHz9ioscxQvkOIFuoVL/X34pWhMNiRRQlAv/ktnQ9YqjJ8b9wPPCVYqwymV4eDe tEldDnOJoTKcTMe1S0TMmZQXZC55AJ8SYmRojowsxz2wdW9QngBfzP/2wknaBiZjshHvRtl/ 8/R6tqzJXto+wHjHZZpGYd+WBBrPn0CfXoYwM8jwnER2YgR1cgndTVepqilnaHAMm81I28A0 B3dtpKvpEqMhEwV2HS29w2zYVMvlc+8xOOLg29/ee8t1WusOc7F7mj37HyMz2YQgCEiS9HEE oIyM6mYWmSzfiO0Gbh4nCMKN36lU87LNFJZOMBzFH4wtKT7eRMXFv9XPE4Bvdo5kZwGm8AjX 3GZofxeNqKcoU+aSC0LeZmZ8Ej6fiylNLiVT/Uy4VURliY62bi5e7sNVmU1OhpMXf/0n9jy7 i0nX/ASLtrYxnn3+mwxcPs7LR4dIcCTSebobQ4YD9UwX6Rv2YQj4MarDDLkHmeqaxF6QRjRq 5ejht9n26BNMjI3wve/+kMxkpSukwtKYJ4Dcqs20vf8+V1TFOEL96Aqr6Dp7mAF7JevXOIlg 5mpjM4WFeRTZctHN9tI/OYoEGE0mKmqryM9LwZFkZUdCCm1XrpFVuHrehcsrsnjjT6+S5UhA lmQMBhOlVRuQohNYsko5f72NXEOEoGAhyZlCSXU6lqoy6o9dY+OO/WwsL6Q/J1+5+RViYhFe IJnJ8UkczpQHM6L7jOIFWpj/8vJZOoamYrIRb37wH2rYUJa5tGC4aNhPT08/dmc2KUkP37er IoCFuRdeoOUwlyUHw033N3Cx1cuBlHTamq6RkpMLURFUkJxkv40JhYeJSPOfkQOx1QaVJAkp BpfwvbAhIyNLMuLHNrTV30AwJc877rbyGOrrZqIsg8OHD6Oyp5LkHyJvxzfZdg8FMDcxyJFT l9iwcz9ZjsU/aWRJZGJ6Fmdy0j0bi8KnqLo+IPwQ1gXSlD4GixGA1pTIwSeeIj8pgC0tD7td Q4KmGtk/DSy+ANWdOPHhcbY/85do3P288qfLrNmwgeunr5CRa2Ng3M+aynK6mupx5lfhGbpC TmENHW3NJNkT+fORM/zor75K87VW1u/YT45TqQ2ksDTmCSAxs5zEj3/+zjcK7tuFdVrweP10 Xr5K7bYNnDt5DFU0B33ARUn5Jo598B6r1z9CW2s9guilmlG6h12MTkeprqnBde0k/VNGSnwB QBGAwtKIWzDc3qef5eSJ01Rt28W1y1d44qmv4Z0IMtZ6iMstA3z7Bz+k5eIZ9uw9iCo8Q7Ij kYrVKoqLipge6SVl1QaC9VdwJCoNMhSWjhIMp3iBbiE63ACh2NqkLo9YID6OBbqxCFZnrUel m1+qX0mJVLgF0ZSLJtaqMlERlWaBm1cQUNsWbqElRyJoHubKcAHfHDqjGZ/XR0LCnV9j3OMj yLoEkhIMuMbdWI1qZK0Fq0n/AEa7cpj56b/d96oQgtVK1i9/fl+vsVjiJoDzH73Bmr3P8dYr r/HMV/bjl42YtFGm3XMIahWp6Zm4hgZIzc4Ddxt//qgbYW6CmrVO3muNYJlqpGbLo+SuLifi HiMlPZ2RkQkKi/JvlFZRUFgEcRNA2DfLu2+9xZjHw3vvHsUvymCQSRNniCYW4H7vKO39PWw+ 8Best/VTVLsVTeM7DM8EyckrYM7XhxB0c+L4EZypuVw+d5im9gGe/tE/UZOtLIwVFkfcBODM KWZj7S7OHD2CKjSDKCaQmmIh35JBNDGfUa0JtdlMaX4qmemrOPWnQ8imZPaWpDOizWdWNU26 MxFVokRvVw+ZmUWUmTLISFBKwyksHsULpHiBbmH8Ny+AyxWTDVmSUS1QnU8wmnD8xx8vaEMp j64QFxK/8fVlEQz3oFAEoHALx/t7GPd6Y7IhyxKqGDvExG5D/rjHwMI24iaAlvMnaB2aYeeB R3Fa59f3P3nqNGZdmOLqR7hy5A9MeMLkr3uMdcW35iX09PWQn5v/oIb90NPrnnrgleHiSdwE 4JmeBoMVd8tFjnR04RUScDpTsPiH6Q9ZsBDEZgiSJ8G4a5iwYMY7N8LlumnE8BSDA9fJWLON 4GwfTVcuMDIdYdPaPE6ducS6TTVcax9jc2kKl7pn+fqzT2A2KA87hfnErWJUelEZVl8v5+q7 qKgoxZhexuxUP82dXQz0dd5yrNZooaKikKGeATpaWujpG8WgE7jW0sLEuAtvVE12soWGa1fR 21PQqQ34xnoY8chM9rUzNje/T7GCAsTxCZBkt5Nbs5cdqcmotGqyRTVEM/HOuBGMVsx6LWpB xqiHnY88zsjkHM8+VYyrvwer3UnAM0GtJQWj9kYFCbVKhV6vprtnkIyMVCwJSaSnJpO3ahXZ SfNjQBQU4DNu0EgkQigUivd47jtzc3NYrZ9ulH3iBY6lqdsnZVsehsJYk3NzqO6iqtvtx/Fp EFo8bXxSPmchbj4BBEGI2f31ZUCj0dwyz+VSGe5+N5VYLHNekfDHeyN3S6LFQLYzYdnMZTFf CDevoFarUavVzI118foH5ymtXs/GypLbntTf3owmrYBM29Lr8kuRAHXnLlBas5lk64MLaPu8 AJbLRphKpYrZd34vbLx8vJ3WvqXlBO9Ym8PffW3LspjLJ0/ku94IC3rGGJ3ysEYj8eYfXiSo TyY7xYbDpGFWVtHTO4zDosPoDXOq/Tpl69bReuw8lvxcUjQBRv06Ui1BAhone7at+8JV9om3 Xydt/V50ko/DH5xk484ttNVdQpeehyUyxozKTrbDhlol4Q/M0t41ilknUlS1mY4rZ8lfU8v0 +AD29CIylNpACkvktvKo2rid8oIMupuMCJEpxOk5PhrQoxlrgqQiEgwCA+0d1NZW09pYhySk MD18nYttXayp3UPEINLZ2c72LevQf4EC5nxRqpwOrhw7RMHaSt5+44+oQ9kIA+cwaCPo0vOY 7O/DKIQY9U6RKWsxVpTxx//vvzOlNlLp8TPgDvHj71Tdz89H4SFnngBsGavR9V2krdfIjh3b AYlkq560qQgZ1k1cbu6ltKQAk8VEU30jjz9xgF/9y2s89dffYO8OFwMzEk5zFEuaGd0Cr8Q7 923nyKE3KSsp4sqZi9Rs3k1oIoos2omEZhgXVZiZw4uNwsIykmQ1RmcaG3fsoaevjcKCQnKK DaiVuqAKMaAEwy2TNcByCYZ751wHLvfSQiEKMu3srs5bFnNRguEUlsT+dbkrwhv4CYoAFG5B PPYTfGMtMdmQkQkvsri/tvrr6Cq/FtP1YiFuAuhpPMuZ5iF27XuMHOfiM7ikaIir7T3UlJfd x9GtXGTPMJK7O3Y7iz3OPx3ztWIhbgJorO/hqee/yXhTHS8e7iRtVRbXjjRTXmlmyGfCmZKI e3QMU2oO7u6z7NzzFV789S8prt7CtfZOfLvW8rtX3+dbP/4ntq25dxXrFFYWcQuGyytI4u3X 3qBraAJBLRDwe8ktqSbFCBFRIhwMIsoqAoEA9vRVJOMioXAtakFHXqqdSChE+botpD+EFawV HhxxewKs3f4Y5dEoarX65mpdlmX6m2S+snULmTYNohhFEDSAjEql4n8qFVGrBWRJQiUIbBdF 1GplGXNPUQmgeoA9lWNMnIn58ivRDfpZlGC4W3mYukQu5m+y4gTweZRguIfTxmLbpK54Adyr J8C9sBHL+YqN+efDnf8mK14ACiubFbuClMUQP//p/8GGg8/RVHcaR24F0fAk+lCQbY8/jUVz p28fifqzJ6hv6aZqbSlXr3VSW1OGK2okMDbG008c4E5fYFLUy7uvv4tHbSZF7WV0DjKzk3Ha LMyq0thelXfneUgRDr34b+Tt/x9wXTrE8KxEzqoUkhIseGQnO2ruXDBAlmXeefV3TIZNVOZo UFmz8QuJbFu7+GIDZ9/8Of6ipzGN1tE5NENZaQFhrQm/Dw7sqFmEhShHD71N13SIykwzHYNu ysuKCKiNBLwyB3bV3tGCb3qUo8dPoU7IxD/aStiUSZJRTXqSFmNWDaVZ8zscxXcJHg9kmdZr V7h64RwJGTn0Xe+kZONB3OPdtDd8xLDfivkOxUXlsJeLV9tIdTqY84fpaR3h6ad30tDcymu/ /iW5lRvuePNPjfbTM+qlpCQbvUaF22dldY6F651dvPTmGWrLV91xKlOuAbqHpigvzSEY8jPl NVGZl0BLRycvvX6KmjW5i/1Q8KlUlFkCtA+4+N1bp6kuv7P4PsvaNaV4QhGGR4PsX1fI1cY2 XnzpdSqr1yzSgpry8hIMOgNDIwEObiym/up1XnzpNdbUVCzKgtmejC7kJ6ryoFIVYQnM0Tt4 ncNXBijOvH17r5UnACAzOw9Rlhjra8cLNJ8/jKCzk1awDu1cN56wtLABtZ6CnHRGJ6ZI0EUw Juk4dOgEORlp7H7yaa6cOs6d3iwtiQ6S1dP8Py+8S1pmFuqoi8ZOF6lOJ49uLuFsQ9cd52Gx JeO0abhwsZH65g404gQNbSOkp6by6NYyzjZ0LPITURH1eLg6GibdbmT/llLqGjrvfNpNwlys q6epoRGDMcTRi81k56Tz2IFtnD13ZXG7wqKH//unvyY1IxOLKczhuiZyVmVw8MBOzp69tCgb M2MuBHsKs9MhPJ4mRsMSSbZMqnKMtAxM3n7mK3kNIIpRUKmJhAJodAZkSURABrUW9QKl/QCQ ZUKhIKIsYNRrCATDGAw6RFmFLEbRarV3XIDJkojX50et0aLTCEQl0KgFBEEgKkrotHd+Q5Vl CZ/Xh0qtwaBVExZBpxFQ3YUNgGgkRFQS0KpBJajv6lyQ8Xt9SCoBo0FLKCxi0GmQVQJiVESr 0945MkiW8Pn8yCoBk0FHMBzFoNMiq1SLtiGJIoFAAL3RhBwNIwkaBGTUagFRAu1tehasaAEo KKzIVyAFhU9QBKCwolmxblCFlc2Ua5i5iEoRgMLK5P/613+lIj9FeQVSWJnI4QAzokl5Aiis TPIr1vO9731HcYMqrGyUVyCFFc3/Dz4iZht66CafAAAAAElFTkSuQmCC </thumbnail> <thumbnail height='192' name='QN 2' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO29d3Rc153n+XmvckJVAYVCBpEDQRCJOZMiKZEaWrI0tttJbbfs9un1TPec me6ds2e3Z8/2hNNnu9c92zOeHdttty23ZSVbEiVREnMGI0gQgcg5F1AAKsf39g/actOgGFEs UHifvwjg1ffd9/i+9e793d/9XUGWZRkFhWWKmOwGKCgkE8UACssaxQAKyxrFAArLGsUACssa xQAKyxrFAArLGvVv/6FMBygsRz4xQCQSIRAIJLMtjwW/34/JZLrtd/F4HJVKlZDzPYna8Xic UCSWIG0JlSoxHY8H0VaJIhq1+DsD6HQ6dDodAC2NZ0hfuYZMq+G2D8VCXkamPWSkOTAYdI/U WFmKMzc3hynFjlb9eHtidrv9tp+j0SgajSYh53oStUdcHr77348uuu5SYkt1Hn/x5c2/M8An SCGuXzuH3mtkpT1M35SP6qJs2gaGqCgpoK2vH6s+C4tmloA2C7vgoXdkjo0bqrjU1EFVeT7t PePUlGdxtWOMfU9tR3OHB7zp5AcMhYysX7cWwn4cGenMu2YQjWY0UpAIWkw6LYIgE4tH8XiC qEWJlFQn8zOTWOwOIiE/Wr0Foz4xD5jCZ58FBpgduknnDKhmzyLlOKjKg/c/HmP757ZwsfEc 5jQrEyMjDPkn6RlroWxFOsUmkZ8fOs1LX3yRN3/4PdS2XHRikInRWfyxOLY7GGBocI6nvn6A nsbDTIUl/E1eJtp9aO1a1MExUldtRBcMYlBFGJ0bIz7hx1qez8SQh6bWZtZv3sz41DTf+aNv KgZQeGgWGCAsWPjTP/s3zAx2cP7IMXocNVRnjHDxSjtP79xLMOghmiswOawip8xJRqoRuwYy jAYaT51m5579dAxOkZeTyZwPNOKduzf16ys4+OabFOZkMD05yIryMmxqFVLMjVZtpG10nAzR x4xgwZGZS5ZDjWllCQQ7qatVUVNRTFZBCWkWfcJvksJnF+Fu2aB+nw+jyUwk4ENlMPOYu+oJ YXZ2VhkD3APXnJ+/fa1x0XXhVrRREISka9cUZ/CVPdV3N8BnEcUA9yYejwMkJAq01O7HwkGw wrJHCLkJn/2vCdGWJYnYp3SLk6GdNAPMDHdy+Fwzm3ftI99pue/PyfEogxMuCnKyE9i6ZU7Y R6z93WS34rGQNAOcOX6R/V/5OpGRdl599RpltTW0Hr9KUZmVoZkYpeUlDHa2kZZfxezgRVbW bKXpygUc6Rl8dO4KL39xPxcuNrN13wtU5KUl6zIUnnCSZgC7TUtXVy/TPR2UVVfS034NQ8oK TNIg2StW0nzlMtmFVQwP9aAWdDiEcYZmvARkM6tWljPd08xs5NZrT0HhYUnaIFiKhWltaSW/ uJT+7h7KqysJzkcZa/uIAbGMPRuqGOxqJzWvFCHqIzXFRPPNPnJzcvC5J0hxZjPY001hxWrs 5vuflVYGwfdGcvfj/9mBRdddiihRIJ7MhzSR2vFIkPhMb8LyjJZSbpQSBVJYgCwJxL065Ed4 UDU52Yj6hZOUUjSKKkFfCA+jnTQDzM1MYrKlM+OaIjMz857H93fcQDZnUZCVQlvnAJlWDXGj k0y7+TG0dnkhu924/sP/+UgaGf/x/0JXWrpILUocSTPAtXMfs2r3F3j//Q95ZsdaZuUU7Loo IyMuVGqB0soqOluuU1azDtV0M2e7QqgmLjGYp+XkoBbV8CW27DyAf9VqpnvaKaqooP1mH5u3 rEedmIlGhc8gSTNAxD/PB+++y6RnjtMX2onFQ4Q0AhXGIBF7Ba/+8B9xxyNMR1OoMU+QXbQe tb8XyeRg/YYq3MYgdm2Ek8cPs7p+M8ff/yXT82FSClZSl3f/8woKy5ukGSCvrJaNq9Zz9fx5 pOA0M/EsCtPN5BpjxFPysIhaugf7KcxPJyevhEtvvYOUksfOAicTahuppWU40lJYm5ZNe/NF CkrrkMZdZKUomaEK948SBeLJjNQkUjs2O8v862/AIyStWZ9/DnVGxoLfL7X7oUSBFBYgpKRg /dbLqNWf/cfjs3+FCg/MXCjEL65fQUxA0trvpyx/paaeVKPpLp9ILEkzwJXjH9LnDrPj6Wdw 3mFRy0cfHcasD7NqwwEa3/sxnjBkr36Gratzbjuub6CPooKix9XsZYEky4x6PY/lXNF4clNZ kmYAlVogIgmMXDrJoYEBZrHhdNjQu7voDNooStMjh0PEZfDMzxLCQCw6xbkTc8TCU/R0NVGy 6Vl8rg4unj3JxFyUhsos3vvwFLv37uRap4td1emc6fLwnZe+iFmvvOwUFpK0NV4Gayoq7xBt PePU168mraCaaGCKgalZpJD7tmNFtQZnZipTI5O0Xr/A0Jgbh8PClaZr+LweJI2Z0px0Rqdc lK1uID3VSdTVzURIz2x/OxOeUJKuUmGpk7SvxaLyajILKjEbdCAKlMsiSCVEI2EEtQa1qEIQ ZNQaOPDFlwmEoqTYrAS9XjQ6PbFIiD1aPSoRkAUEAVSigMfrw2g0UlhSjtGgY9uGdaRYk9fH VFjafBIGDYVCBIPBZLcn4fh8Pszm29MnllqCVrK1ZVkmlqA0c0mSbhtcq0Vx0dYIP1IynF6v R3+H5KXPIso8wN0JhKJcujm66Lqw9L4QFnSB5kfbeP3Dy9iduaxdXUT+ikLE3zg0FnBztn2U HWuqH+gkp4+eYtvu7bf9LhKY4+TJc9Rs2kWGzfApn1RIBm5vkL9780Kym/FYWGCASGAO97wP td7HQH83HW1XmXe5KKnbSMvVK4RMDvqunsSYW408fYOykpWcaxvlC1/4EhpPH6+88REbNq2n r7cfuzMfn2uQ3lHvAgOcOPgeFXuexxCb4/2DR6nfvIGO85fRZRVgibkIGpxkpBhRCxK+gJvu 7glMBihYtY6+5osUVK5mcrSfgop6ctKU3B+Fh+OOg+C8ojJ8EyNMTqmJARsrnZxpa8ORV8rI WC/947NsqjTj9lgoLy3mfOMFukdmUXVfJxIO0t8/QuGqGkYvXMRtdJBmiS04RzQuodVquHyq kcqGWo59/C6a2AqEmWbMZpmwMczMkIRWDuEKe8iTNJgrVvL+z37GlGhggywwNBdl4yYlHVrh 4VmQCxQL++nu6cfmzMWkBQkwagQiaJkcHcHmzCQ870LW2TDrRUx6DT19w6woKYWQhzGXB0eq DY1ORzQcxTc/haRJIS87/bYT+2cnOH76IpVVVbS2tFC7cT1BVwRZ8uH3TOJR2TCEpgipbGQ4 TVhlFdosJ5PDs/T3tFBUuQq0BlYV5z/QBSu5QPdmxOXhu393aNF1lyJKMhxP5kOaSO15X5Aj V/oSUsZcikuICSqP/jDaCwzgnerlnY8v4MgtoaY8h8ysnE8GwfHgPNf6p1izcumv9Pk0FAPc m2VdGS40P8HkrJ+YMIZVG6Cvu5WpsSmq12/m8pnjeE3ZuAfa0ToKCYxep6hmDxVFWYt2EQrJ R/CM4H/1SwnTT+S8/INq33EQXN2wkbG2ywyPeInJsLHIyPHTJ1ndsJ1rV45z9No42/Zk4PZH 2Fd47/W8d6K98TCXemfZtXc/OWlGRFFElmQQbk3EiKKIJEkIogi/eUlJkoQQj3Cu+SZb1tYj /2ZSJVHFVpctsgQRX7Jb8VhYYICUrAqkjrOs2bmHNOOtQbDdqOK5MiNtTVfZ/fQLbKzqJG7J pK4056Efvo6OSV586WsMXTnBq0dHSHHYaDnaSW2tgbFIKiajmsC8H40tHXffOZ7Z9yLf/29/ T+WaHfSNjBCdaOfHv/yQb/37/8Ku2oJHvA0Ky5UFBtCZ09h34LkFB5qAHU89deuHbOcjn7iq Ope3X3+TXEcKsiSj1xupXb+VDH0rfWNxcm0Owl4/Br2eoso60tXzlG9+hgyLBbUURGeysfvZ 5ynOst/7ZAoKn8Ido0Ae9ww6iw2dJjFT1ndjpPMK+rw1OIyJ0VcGwfdGmhsm8NbLi657CxlI VJf1wbUXGkCO8w9/87+Ttf1ldq1MY2IujF0PAVmHEPagtzkJz08hmtKI+6ZRW9KR/DOoTGlo 5DCRYIAxb4wsi4hoTEMOuolpUshy2BbxQh8exQD3ZnlHgWb6cauzmL1whvlukfqN2zh49Ahr 19Ty0x+9RmHDOuJTQ6zcvpvWIx9Rs30j3d1zCCov8bkJduzZR3NrO69euYqzpIGUQA+59fvJ 2lq/aBeqkFgkrxfPoQ9RJWBJ5O9ngyZbe4EBxsfdbNq+m+nBLkw6GBhxYTMZmPFDVU0VpVWV zKYITE1MUFhexMRcCJPgQZOWiz0ni8K8LPpnPIgrQ+RXVhCdVDEyMbXgxD1tV8gsraG16Rob Nqy7eyvjYT7+4AOklGx21Rfy8cUe8kxB1LYV5BeuwGrQPtBFK9yDQAD/wfeS3YrHQtJmgg+/ /n3mjQX09Y6wqSqLGclKuinGxNAYgt5ISUU1Ax03KKrdSprvGs2xKtTtR3CrI3QF0ol0nuGp fc9jz8igq62d8vJSOm92sPXZF8gwffo6H6ULdB+6Y2OM/9s/X3TdpUjSVoSp9SbWrFvHzPgA w1MR5PgQLr2G+jSZqKOQMwcPMq0y4izykmM24xmcRR2OU15ZjMO0mmlTmFRtlItXr7J2815u fPSPhEzZeLwhMkxKgpzC/ZE0A6xauwNrWip7d++H4Awzso10qxarRkLSWVnx0kt0tF7B6UzF nlVMpfs00tanKXXqyBKthI2bSTHqya7Sc+PiBXY+9zWarl7HYV0ei3oUFgclGY4ns5uSSG0p GCTUfjMhwcq4FEclJmhF2ENoK7VCFBYQ12iIVFYkJGszFoth1OrQJ2Ls8iSVRoyG/Iy75sjO yUJ9h9CVz+dDFGR0Bgu+uSlm5oPk5uWjVWqfJ5y5UIi/PXsiYfrrcvN5cVVNwvQfhKQZ4Miv 3sKwohy1VkfAO4tWo8VgTSPqmQJDKqePH8aqD7Fu70uc/OBNnOkOrg/42bumEFmOE/DOIGmt TIz1kZ+VhdsfpTDHQe/AOIUF2fT3D5OTk8nouIuiokI0CcpBV3iySZoB1mzdwKGPTuIb7EE0 a+n2WzHLM+h947TOCNQW535ybCwcZGjaR0bBDI2nQsRC44yO3iSvYTdzY61cu9pEPC7QqIvQ 1zNC3do1tPa62Frl5ELXHH/8zTxsRmWuQGEhSTPAxMQEGr0OS2oGeSVZqD1m5NlOpqM+KktS SXekYdZGUIuQ5sjAHZTRGWz0t17GlrWCwuICJqYnyUrPINWhxaRRIYpR1MYsigsKcY2OE9c5 scjjeEMxxQAKd0SJAvFkRmoSqe32+/lVa3NCBsGyLFORnsGWBBQ0fpj7oVSGY+kVa0q2diKT 4Zba/VhQGU6WJMLhMCqNFo36djFZkpAgIUlSjxPlDXB3ZjwBfvRe06LrwsL9AZKtvWAMMN3b yM8/7kCr1vLtb36BcCSO2aDF4w8SGL5JVzCdTbV5hIMBNDo9wUAAi9WK3zOPwZxCOOBDZzQR DvjQ6M3otXceZkz2tXLsYjtbntpHvlMpbLWUCIZjNLaNJLsZj4U7Pp2RcBCL1cbbb/2SiMeL ZM/CqokgBUUaW49gCG+lc3iGmhInr/zDD1n3+T/k8olzvPi5TfzkJ6+xbsfTjHa3cuCr36ah PPdOp6DxTBPPfuXrBAZa+MWRZopXVdFx6jr63GxMoUnMxasxSXF0qihTc+MMd02S4jRjyyyn /eo5ymoaGB7sYd+BL5DrUAyk8HAsMIBKo8eg16GSZVKMRsa8MVY4LEyMT5DjzGNDnQFPOI4U CTA8NM66bVtBMFKaZ2RiJkzDus3Ur67EEhunv2/8Uw3gcBhovn4D/3gv+cUFDPV1YHEUEvdO obNqaG5pJccgIkkyshEqM1JJWbOKM786wURYoFYtYcgoVh5+hUciaVEgOR6lt6eXjNw8xoZH WFFcQNgfRZZjBDwzSHobqoiHuNqE2ahBg4DKoCcUjOOeGsacmoFWq8VmebDa/0oU6N4oleE+ wygGuDfhSBTXnD8h0ZpYLI5anZgo0MNoK8lwCgtQyRHSAzfvbABRgzqn7qG1l9oXQtIMIEWD NJ6/QEX9JtIsumQ1Q+EOiP4pgm9/+45/E4xpmL9z6jG3KHEkLaB/8uCvsReuRCv5OfzRYeaD PtqvXKOtrYXDR07g9gW4cOoYQ1Pz9Hc309vTy4fvv0/Xzev8u7/8K0Ynpzh6+Bi+8MLS6woK 90vSDOD1x8h0Orh67jTF1SUcfPs1jp7oIDTcRHpuLr/4yQ/wazM4duQQ7334ITaNn5GpMU5d 7KRuTQP95w/S1tNNa+94si5B4TNA0rpA2/ds5ch771BZXsrVs5eo37iTsEsi7jrFhUvN7H32 OTquXaZ8ZR0aqRC9TovFnkl+di6zE/2klTWQEekl22FN1iUofAZYclEg3+wkKnMGhsSMk5Qo 0H0gBWaIXPrRHf8maE3oNv3rh9ZeavdjyUWBzPaMZDdh2SPrbGi2/kXCktaWEkvOAArJR56Z wfV//01itGVIVDX7h9FOmgEaj/6a8s3PcuTgQb70pS/c9diYb4J//OUh0Jj4/O4q3rk0SWZ8 mOySBvJLS3GYlVIoi4kcixEdScw+wUuNpBnA4xrl4DtvMzo+zWs//SEzcRM2U4zQxAhySiYO WzpHD7/H9i/8K9ZZ+qjY9jyq6wc5dPIMU1EnQx3NbDKkMuGeYmp8GocxynuHTvAnf/X31GY/ WHqEwvIlaWFQrcnKs889R0aKhnA4QiQcIizqqVuZR3VdPfNTM+RXNFCWl0ZG8WquHXubJlec TdUlbNi4hVX1a8lJNeAPBkBUEQxGWLN1J+n6J3utgsLjJWlRIEmSEAQBSZIBCRkBURAQAFkQ QJaR4nEElQqVKBKPxUAQEUWQb+2j9MmxUiyGqFIRj8dRq9V3XRShRIHuQ3dsjPE//18XXXcp suTCoIlGMcC9icfjyLKMWr34PeSldj+UKNATiDcconVyAikeR0xAqFIritRkZi+67lIkaQaY GuziUusA257aSYp+oWs7OjvRqeNkrlhJb9MJukbm2LDzGbLthtuO83g9pFhSHlezlwTuQIB3 2lsSpp+q1ysGSDRXzp7HsWo984PdnOroRNSbcWTlo/aM4NOmM97fgVUfIiV7JZ1dHWRnZdLU 2kUo04kU8zM92YsmvRSfewCjWsXQdJCtDRU0Xm6hvr6KK9c6qKsq5FrHCE/v3oVR99mf1FF4 cJJmgI1PP8PFo+/RMauidm0Z19wpuFovgn+W3ukIVUUrbjtel5JCcHSILneIcGACUeUjHjYQ nh8hEtNi1Wt44+23MFnS6ekdwOWaondAw9T4GHPBCEad4VNaorCcSZoB5lxjRCwr2NVQiNFq QuvUQVDD9PAARaudZNgs6NQxjBooL6+kc8jNhm07uXnhLPmV5YTnh8DqxF7oQJLV6FQi69bX 0Xilnfy8PDzzAXJzcvAFYph1ylBH4c4oUSCWXmTiXnjDIdomJxK24ZxWFFmdmb0sokBKZTiW XrWyZGsv78pwskzblbPEUzKxay3kF2Z+crAUj4MoIv7eRFNP62W86nTqKgru+8SyLBONRlGr NYji4635/6S/ARKtPery8N3/ujyqQix4x012XKTHa2HvKgM//ps3afgXu8nSB+iZkckzeolZ Cwh65jEQwoOVjfWVnLrQjNFkeiADtJz9kJbxMNt27MKqEzBZTIT8AQSNFlGOEUeFVq1CACQp TigcvbVhhtF8q/qc3kgsFkGt0S0o4ajwaMjcyqxcDiwwQDgQwpySjlajJTWnmOGWa8wbobGx h017CvAPu0krXo+r+xQhfTayXIgqMEe/y8uYJ0x2yv0tcO/pmeHAS1+j/+IxLk7NodKKDF6d QJduQe0bxFm3A10wgEEVYXR2FN/gHLaybLyzAmfPn2TTrj1MTk3y7T/6Fhk242LfF4VlwgID 5NdsoOfIEa7dXMGq2lLAT2BunIbN6ykodBCVjThz0hn1ZDAR0gFqcguLyNCaeZDdi2rqC3n3 9TfJz0wl6AuQU1xARU02UmwaQ56ea7395GiDTAkWUjMyqLDnYllVRvOZdtZs2ErDymJGVxQr D7/CI6FEgXgy++mJ1J6c9fGfXjmz6LrAklsRs8AAcjzMicOHseStQBcxsLq+9JO/eWddqM1p GDR3Dr1JsQjz/iB269JdqK4YILkstfuxoAs03HwByVFJXYWF//YfX2XYvZ6yDDU3+uapzNMQ UFlxzfhRxzy457yo4nHWb9vG5cZGspypvHPqEn+wdwejnjB7d+1Aq4xPnzikuWECb34jIdoy MuGE7ED8cNoLDKDVa/FN+olG9WQXVeEfHeTaoIfm5lFM+0rwR60UVG+l4+IRDLoIxXY4cbyJ 2Zk+wioHaxvq0YphRocGCUZiaA13nkzpunKCxs4pdu7Z/0D7A0jREJfauthQu/qBLlThAZBi yL7JhMknss/9oNoLns6MyvUU+c7SOWRkw9ZqIExwfpzM0jWUlNiJyTqsqRZSN2xArZKwaGTs 5Sq6elKoqFjNUO8NRIOdgiItxrt8/be2jPDCS19j9NppfvZxP46cDJoPt7G61sRoMAW73cS8 awaDI4eZ3rPsefpF/sf/+z2qNjxFZ/8AwdE2fvDKu/zx//bX7KoteMDLVlC4xQIDCILI6nXb fu+3BVT83m+sBb9LVrMB+fm3fs7N3gFA5T1OXF6Rwa9fe5Os1N+t311Zt5EM8036PDF0/2wa PqdoJWlMUbTpaWwmI8VZqYhqHbsPvEBxlv1O8goK98WSiwINtTWiL9iIM0Hr2pVB8L2Jzw4S +OWXExOtkSFBQ4CH0l5yBkg0igHujbIkUmFZI/v9+I4dR0hApulvM1hFgwHL3j2Lrv+gJM0A /Z3XcRZV0XGjlYaGe2y4IEU48fFHSNZctq7O5+ilLvIsUVTWFeSvyMGse7Ji4Usd2efD8/ob CT2HKi1teRug58YFOsbnabvRSdQ7wYxkJd0UY2xwDFGvp7RyNX1t1ymu34bdc41AWjXqzuMc HL5Eh89BY9dZdj/9HHGi9La2UV5Zxs32Drbv/xxpnxJ6VVD4fZL2pIhqDbl5+fR1tNA36keO TzOmU1NnjRB1lHL8V7/GrTZizXOTbtESmgmijskUVxaTal7NtDlCqj7GxUsXWbt5L02Hf0pI 72R6LkSawXzvBigokEQDrGzYjj07D+3OvRCcYUa24bTpsGsl4no7uV/+AzrarpOVmUZadgkF UyeQ1u6gLNvAvJhCWLseq0nPgfJ6bly6yJZnvkhzcyvpVmW7JYX7R4kCsfQiE8nWjvp8BJuu JXRFmKDTYlyzZlG1lSiQwqIg6PWo169LzNLFWOyT8Go4FkMQBLRJ3IcgaQaIRcPMewPYbDZU d1gSGQqFEATQaPWE/R58wQj2tDTUj3n55HJkNhTib8+eeCznyrak8Gebtz+Wc92JpBng2K/e IJ6WS11dLUSCqNRqdEYL8cA86Mwc/ugQVn2IdXtf4vhbP8VitRFKXcfTa4uAOOGgF0ltZHS0 jxU5ufiCMTLSrIxPucl0pjEx5cKRamd6dp7MzEzFOAp3JGkGqF5Ty8cnLnJ9ZpyAEKM/ZMOq DqCdG6B1VktDae4nx0qxCC5PiOzMGc4eDxALjTM4cIPCDfuZG2vm0vlGQhFItUJTUwebt2/h eucUu2qcnOmY51996+tYjcpcgcJCkmaAabcbtUZAbbCyujwXnceM7L7JdDCFiiI7dpsdsz6M SgCrLZX5qIgoGBgaaMKalU9xWSHDo0PkpKZiseqwaFXIQgRZl0FJYSFj/YNEtBmYokPMBSOK ARTuiBIF4smM1CRSezYY4JfNTYuuC7fK4fzz/RscJjNfrK5dFG2lMNZ9oBTGSi5L7X4sKIy1 HFDeAHdn1hvklY+bF10XQJJkVhdn8lRD4aJrL8o8QGBmkJ+/eYSaDVtZu6qYW3sSSUjyrVRr URT/mdMEQKbx3Ck2bNqOLMcRRdVvXnPiXSu+zQx3cvhcM5t37XugJZEKiccfinK8aSBh+lqN OiEGeBgWGGC0o4vq7c+yLh++/6OfoTMYUc9NMOoL4kzTkZZRwMS8h0yVGrFsA8y20XryNBpV nO9//x9Zt/NZpqfH+cYffYsVzk+vDnHm+EX2f+XrREbaefXVa5TV1tBxqglDTi7mqAtDfgUm ZHRijOn5cQa7p7CkGXDkVdHbcoXCylUM9HWxe9/nyXUoBlJ4OBYYIG9lJWfe/hhhvhSdSkCn N2DPKcKhFViRZ6ajx0UgECGlOJu2643YnanU1Vchi1oaNu5kY30ZvdMr7vrwA9htWrq6epnu 6aC8upLu9msYrPnEZ6cQbTKt7e1k6jUQjxLRSZSlWkhpWMWpN44wEJYpLAmiTstXHn6FR+KB o0CTg91ELDnkpT5aRTYpFqb1Riv5JaX0d/dQXl1JcD6CLEfwzk4SNzjQhN3ENClYLTp0soDK bCTgjzE53I01Mx+dXke67cG2R1KiQPdmxOXhu3+XuOK4e9cW893Pr1103UeKAi0XFAPcm1A4 wvCUJyHRmlg8ht1iJN22+Iu+F2UQ7B5o4p8OXSEjr5gvHnjqkzXG8WiI4ckZCnJzADjyzkds f/4ZtJ8ifOPCacylDRSlKbu2P2loiLFCNYbqLksixbRiBM2Dbzu11KrZLXgDuLrP8eaZQfR6 gbmOa3hsZZTqgxSv2cCce5TOvgnMhlTUfhfemEhpRQaH3j/Gnv176HHJrMlW8cbHjezbuRlB I3Lj5gjf/s7L2PW3f5tIsTDN129QuLIGm/HTbLT4KG+AeyO5+/H/7MBdjzF+9U1UznsVv1nI Ursfd7R4TkEZX3lhH7LaQn11BWpTOnUV+QSDfnyBEFIsis6cTs2KHMbcc1St3USqTqZ63Vb6 B3rISdcTCMcx2lLxDbcy7A4tOMeZD95GMqVBxM/Z02fxhgL0tLbT3d3F2XMXmMMNEhAAABEk SURBVA+EuH7pPOMzPkYGOhgaHOLU8RMM9LTxH/76/2FyZoZzZ88TiMQf7m4pKHCn4rhSHEkW UKlEIuEQcUQ0oohKrSIenONEUw/b19ch8puyMYJAKBRCp9MhiCqkWISYJKNRqwGZcDiKwWhY sKvMOz/9GTu++hItJ94nrbiE61camexTs6kmjpy9lqvnTlBavZnRkW48U718+flneePQKXSG dESTjjLtLI39XrbufZGNVXn3fcHKG+DeLKc3wMLKcKKK33ZWtLrbZ4bVRjt7tiwcvZtMv+vn q7Q6/nkT1Oo7N2jr7o189Ou3qCwpovliEyvXbKYkV0aYO8vFa23seGovnc1XKSqpRluUjUGj wu7MJzcrm9nxfuyFq8kJDpDtWF6bZCssLksuCjTvGkFty8WUoHGS8ga4N5LPRfj83yPcpcya dsOfIKZkPbD2UrsfS84AiUYxwL1RKsMpLDvkSITJv/pPAAh2O2l/9q+T3KLHQ9IMcPnke5Ss 38uJDz/khReev+ux8YCLV177AHQWnt+5kncujZMlj+EsqCG/tBSHeXlksSYSWZaJ9PQAIDid SW7N4yNpBnCPD/DuO28zOj7Dr/7px0zHzdjNMfxjo8iWdDLSszh74jAbP/cytYZuijcdQHX9 Pd4/cZLxiJP+jqts1afi9roZG54g06ri8LGzfOPf/xdWZSob5yncH4tf/fQ+0ZqsPPvcc2Sk qPEHY4SDfrxxNTXlmVTV1DI1MEJKdgl5TgvpKyppPfsxLe4Y66tK2LBxC6vq15Jp1TAzO4fO lMLcrJuymgasS2eSUeEJIGmD4GgkjEqjJRKOgBwjJqvQqAVUAiCokCWZYMCP1mhGr1UT8HlA rUOvFokLKuRYFFEUQRQJeL3ojUb8fj8Wq+2uFSCUQfCdkcJhRv7wm8CtLlDW9/52WQyClSgQ S+8/JRnasiwjR6PArRLmqNXLwgBKFEgBAEEQELS3crIisSjtUxOPpFfuSMekXfp1WpM3CB7r 50JzL9t27cCsW9iM3t4+tKoY6bllDNw4y80hN5ufegan5fbEuWAoiEH/4FmJCp+ONxTm9RvX Hknjuxu2KAa4G+eOniBv3XZmh3s53dmFRm8iLbsA3AOEDFkMdbfcqgyXUcbNjnaKC3I5f6Wd +oJspFiA6clexNQiPDN92AwGhlxBtq4p5+yFFtatW8WFy63UV5dyrX2A3U/tvOuOlQrLl6QZ YNuz+zl56B1aAjpW1ZdwzZ3C6LWzqEJeuqeaWFmY/8mx8ViE+SjgH+NmS4RwYAJJnkcVMhBw jzIU1WDVa/nFm29gMtlpaVUzMeWip0dkYtyFNxhVDKBwR5JmANf4MJI1j431hVjSLIgOPfgF pkcGyCpLJ9NuRa+OYVBDSUk5vWPz1G3eRseFc2QWlxLzjRK3WCjKrkWS1ehUIvX1VVxq7mZF fj5eT4D0jGxmPVG0mqRFexWWOEoUiKUXmUi2tjcU4vLIECrVw39x1GXlknKHOlNL7X4oleFY etXKkq0dj99aZJTIDTISwSJVhpPpunGZqCmHquKcRWhWmLERL9m5jkXQWhyUN8DdGZv28u/+ x+FF1wWW3EbZC8YAU11XaBmHPZtSaL5wEl1WJeLcMKNeiTxbFFVaOb0t16mtr2JkeBKr1UDH 0Cz7dqynp+Uy42EjxXYtbf2jrNvQwJXzhxgec/CNb+y+7TztjYe51DvLrr37yUkzIooikiT9 pnCqjIzwySoyWZb5bU/tt8eJonjrd4KwYLWZwqMhyTKBUDTZzXgsLDCAf95LmrMYY2SMG24T dH6AOq6jNEfm8gSEfa3M+SX8/glm1AWUzwzicgvEZImujl4uXRlgYnUe+dlOXvnJ6+x6cQfT E0MLTtzRMcmLL32NoSsnePXoCCkOG91netFnO1DN9ZC1bg/6YACDKsKIe5iZnmnsxZnEYhaO Hj7IlmcO4Joc4+U/+g45acqukAoPxwIDFNRupOPDD7kqlOEID6ItqaXn3GGG7KtZu8pJFBPX m1spKSmk1FqAdr6fwelxJMBgNFLdUEtRYTqOVAvbUtLpuHqD3JKVC05cVZ3L26+/Sa4jBVmS 0euNVNSuQ4q5MOdWcOFmBwX6KCHRTKoznfK6LMy1lTQdv8H6bXtZX1XCYH6R8vArPBL3EQWS mZ6axuFMfzwtSjBKFOjeTLh9/B//cHzRdZciCwwQiwTo6xvE7swjPfWz9+2qGODeJDIKtNTu x4Iu0OzgNS61+3g6PYuOlhuk5xdALA4CpKXa7yCh8FlDDs4Safp5QgwgSRLSXSrOPW7tO84E jwz04qrM5vDhwwj2DFIDIxRu+xpbFtEAXtcwR05fZt32veQ67v9NI0txXLPzONNSF60tCrcj RrzEr/6Y5VBybIEBNEYb+w48T1FqEGtmIXa7mhR1HXJgFrj/AlT34uTHJ9j6wpdRuwd54/Ur rFq3jptnrpJdYGVoKsCq1VX0tDThLKrFM3KV/JJ6ujpaSbXb+NWRs/zJH36R1hvtrN22l3yn UhtI4eFYYABbThW23/z7m18tTtiJtRrw+AJ0X7lOw5Z1nD91HCGWjy44QXnVBo5/dIiVa5+i o70JMe6jjnF6RycYn41RV1/PxI1TDM4YKPcHAcUACg9H0pLhdn/+RU6dPEPtlh3cuHKVA89/ CZ8rxGT7e1xpG+Ib3/4ObZfOsmv3PoTIHGkOG9UrBcpKS5kd6yd9xTpCTVdx2JQNMhQeHiUZ jqUXmUi2thTxEx++TCIm2JdsLpCCwm+RBS2yrfpW0YHFJhZHUCdobcZDaCfNAEG/F63BhN/n JyXl3t0Y99QYsjaF1BQ9E1NuLAYVssaMxbj0l909aUguFxP/9s+T3YzHQtIMcOHY26za/QXe feMtXvjcXgKyAaMmxqzbi6gSyMjKYWJkiIy8QnB38KtjvYheF/U1Tg61RzHPNFO/6RkKVlYR dU+SnpXF2JiLktKiW6VVFBTug6QZIOKf54N332XS4+HQB0cJxGXQy2TG54jZinEfOkrnYB8b n/4D1loHKW3YjLr5fUbnQuQXFuP1DyCG3Jw8cQRnRgFXzh+mpXOIz//JX1KfpwyMFe6PpBnA mV/G+oYdnD16BCE8RzyeQka6mSJzNjFbEeMaIyqTiYqiDHKyVnD69feQjWnsLs9iTFPEvDBL ltOGYJPo7+kjJ6eUSmM22SlKaTiF+0eJAvFkRmoSqR1xuZj5wY8eaUnkpyFLMsJdKvc9bm3F ADyZD2kitZX9ARSWNb5olIM3W0jE2kVZlhCExCTDPYx20gzQduEk7SNzbH/6GZyWhdUDTp0+ g0kboazuKa4e+SUuT4SiNftZU3b7uoS+gT6KCooeV7OXBZFYjNbJRyuN+KSQNAN4ZmdBb8Hd dokjXT34xBScznTMgVEGw2bMhLDqQxRKMDUxSkQ04fOOcaVxlnhkhuGhm2Sv2kJofoCWqxcZ m42yoaaQ02cvs2ZDPTc6J9lYkc7l3nm+8uIBTHrlZaewkKRVjMoqrcTi7+d8Uw/V1RUYsiqZ nxmktbuHoYHu247VGMxUV5cw0jdEV1sbfQPj6LUiN9racE1N4IupyEszc+3GdXT2dLQqPf7J PsY8MtMDnUx6F+5TrKAASXwDpNrtFNTvZltGGoJGRV5cBbEcfHNuRIMFk06DSpQx6GD7U88y Nu3lxefLmBjsw2J3EvS4aDCnY9DcqiChEgR0OhW9fcNkZ2dgTkklKyONwhUryEs13btBCsuS T6JA0WiUcDic7PYkHK/Xi8Vy+0TZUkvQSrZ2NBZjNhhMSBg0HpcSovuw2p+8AURRRKvV3u3Y zwRqtXrBdcZisYSE/J5U7bgE0+7IXc2l16oozU17YO2ldj8+OVqlUqFSqfBO9vDrjy5QUbeW 9avL7/ihwc5W1JnF5Fgfvi6/FA3SeP4iFfUbSbM8voS2OxlAEISExaafRO2p+RD/+ReNdz0m z5nCf/83+x9Ye6ndjwV2CXkmGZ/xsEot8c4vXyGkSyMv3YrDqGZeFujrH8Vh1mLwRTjdeZPK NWtoP34Bc1EB6eog4wEtGeYQQbWTXVvWfOoo++TBX5O5djdayc/hj06xfvsmOhovo80qxByd ZE6wk+ewohIkAsF5OnvGMWnjlNZupOvqOYpWNTA7NYQ9q5RspTaQwkNyx/dF7fqtVBVn09ti QIzOEJ/1cmxIh3qyBVJLSdGLDHV20dBQR3tzI5KYzuzoTS519LCqYRdRfZzu7k62blqD7lMc 4PXHqHU6uHr8PYprVnPw7ddQhfMQh86j10TRZhUyPTiAQQwz7pshR9ZgqK7ktf/vfzKjMrDa E2DIHeZPv1mbyPuj8BlngQGs2SvRDlyio9/Atm1bAYk0i47MmSjZlg1cae2norwYo9lIS1Mz zx54mh//9Vs8/8dfZfe2CYbmJJymGOZME9q7jEe279nKkffeobK8lKtnL1G/cSdhVww5bica nmMqLmDCiw8rJSWVpMoqDM5M1m/bRd9AByXFJeSX6VEpdUEVHgElF4ill5+SbO05X4i3Trbf 9RibRc+/3L6w5OW9WGr3Q5keVViAxaDhm/tqEha+XUooBlBYgOCbIPjO/5IQbRkZqewZdBsT o/+gJM0Afc3nONs6wo49+8l33v8KLikW5npnH/VVlQls3TInHkFy9yZMXvZPJUz7QUmaAZqb +nj+pa8x1dLIK4e7yVyRy40jrVStNjHiN+JMt+Een8SYkY+79xzbd32OV37yI8rqNnGjsxv/ jhr+6c0P+fqf/iVbVi1exTqF5UXSkuEKi1M5+Nbb9Iy4EFUiwYCPgvI60g0QjUtEQiHiskAw GMSetYI0JkgpqUElainMsBMNh6las4msz2AFa4XHR9LeADVb91MVi6FSqYjH46jVamRZZrBF 5nObN5FjVROPxxBFNSAjCAJ/URFHpRKRJQlBFNkaj6NSKcOYxUYGEBI4AE7QgpiHYVmGQX+f JzFhLZHay2mXyGVngDux1BK0kq0tSRJAQirDLbX7oRiAW7tQCgmaUX4StX/7SCRKeyndD8UA CsuaZT2C9LkGeP3gKTbu2sTQjVEi8hz7DjyHZjFqK8oyZz5+jWkxC0MwglodZM1Tz2JbhLXJ rqFOTpxtxFGykvBohCAzfP7zzz1yDQefq5/X3j5GQXU9sdlxRCnGhj3/ghTdo/fZR3taOHfx Es7SNUTmXASCYT733LOLEoaMeKf4m7//AV/Yv4V5dSbjE3N8bs/G+/rs0hmOP2YGu9s4f/Y4 AUGDx+Ph8oevEbEVL8rDPzHURW9PO1MhPULYR/uFo4xELYvy8He3XUdlyyHNpMNo0XDyjR9i LFizKAVMxnqaqHvmBaZ7O7h54UPGYnYsi/DwA2QXlGLRqDGaNRz/9c8w5Vcv0sMnc7HxEgX5 WYSDPn74g5+zZmPDfX962RrAkZlDeWU1Fq1MX08fZev3Mtd1mVBMemRta1omWilG0DtNW+8w uRVr0M32MxN49N3XM3NW0HryLa6ORUgzaah76gUGLx8jvggdWUd2MZcPv4falkFO5XrU7i7m grFHFwaO/eondAf02PUiDTv2M3jtDLFF6XzHicfidLXdYMLt44UXn+HY0fP3/ellPQaQZZlQ MIhGp0OWZEBCpdYgLtIgTZYl4nEJWQZBkBFENapFKAsYi4QJhiNodfpbbZUl1BrtI29oIcsy oVAQrU6PFI8jAIJqcdocjYQIhaPo9AZEAWRpcdr8W2Kx6K0BsKAiHove9/LeZW0ABYVl2wVS UADFAArLnGUdBlVYvsxMjOKNCooBFJYnf/e971FdlK50gRSWJ3IkyFzcqLwBFJYnRdVrefnl byphUIXljdIFUljW/P9PLvOcMnuaNgAAAABJRU5ErkJggg== </thumbnail> <thumbnail height='192' name='QN 3' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO3dd3gc533g8e9s38Wid5AEUVjB3ilSpEiqWsWSVS3ZsSzHJRfbSS7Nl7vL nZI4uUtix/E5Tpy4JE5cIlnNotgligUkwQYQJHrvZYFdLLaXmXnvD1CUIBQRJAiSwvt5HjwL cmfefRf7/nbmfec376sIIQSSNEsZbnYFJOlmmvYA0HV9uouUpBtGBoA0q8lTIGlWkwEgzWoy AKRZTQaANKvJAJBmNRkA0qwmA0Ca1aYUALqm4vcH0HWdQCCALgThYIC4qt2o+knSDWW6+k0F B3/9S5S0YrKsYWrbuklLzaO5rYu0rGyeffwTN66WknSDTCkAOjt6cfg0ek2CBx55iH3/8F3m PPDbxJqOoOv6lZ94PH7jaixJ02gKAaCwceN6qlr7WVWyiENv7GH1Ey9QfeogWQtWYjAYMBgM qKqKyTSFYiXpJlKmOx1aBoB0O5GjQNKsJgNAmtVkAEizmgwAaVaTASDNajIApFlNBoA0q8kA kGY1GQDSrDalABjsbqO07Axer4eyk6V0u4ZprruE2xe+UfWTpBtqSgFw8OhxihYU03vpPCFL Js54B6U1Lg7s23ej6idJN9SUskFXLS7kzZd+wdqtO/DUnmB/ZRzn8vvR2k7JbFDptjSlrDUh FNJz5pGWYKbH4qTkjjtpOXeMzJINMhtUui3JbFBpVpOjQNKsJgNAmtVkAEizmgwAaVaTASDN ajIApFlNBoA0q8kAkGY1GQDSrDalAIgE/fS5BoirKm63B00X+LweIjH1RtVPkm6oKaVC/Oe/ /5i8JatJiHto7XNjt6bQ0ecmJTWVZ594EJCpENLtZUottbBgDjVVlZgTTNxz//3s+/73yHng t4g3HZPZoNJtaUrp0A5bAharjTUrlvP2m/tZ98wXqT7xNlkLV8tsUOm2JLNBpVlNjgJJs5oM AGlWkwEgzWoyAKRZTQaANKvJAJBmNRkA0qwmA0Ca1WQASLOaDABpVptSzkLY282f/a8f8rkX dvLO2Xbu37GegweOklO4hCcf3nmj6ihJN8zVB4AQHD50hMWLC1EVG4lWna66C8zb9hjR+ndk Nqh0W5rSESC/qJjmppOoJhvJDiMiqRBX2W6yikpkNqh0W5LZoNKsJjvB0qwmA0Ca1WQASLOa DABpVpMBIM1qMgCkWU0GgDSryQCQZjUZANKsNrUAEDrugUF0XaW3pxdVF7hdfQQjMvdHuj1N KWfB29PAt771Co8+sxnXwDCKbqVnKEyS086zTz58o+ooSTfMFLJBdV597S2cDoXmrh523XM/ B/7xH8i678vEm4/LbFDptnT1yXBC4Bv2cv74GQpXzOfE8TOsvnMn1aXvkrVoDTs2rQBkMpx0 e5HZoNKsJkeBpFlNBoA0q8kAkGY1GQDSrCYDQJrVZABIs5oMAGlWGxMAYZ+bUExjYNB9M+oj STPqQ1esNF79/jfpS99MblYan3ns3ptTK0maIR86AhjZ9fBj5KTZycjMuDk1kqQZNCZnwZaY TCgyiEkNjdm47sIp3jl+hlVLF1Pe7OKBu9ay/8AxsgsX8cwn75mRCkvSdBoTACaLBSUaII5t zMZZmRlougFHcirJ9j7a6y4wf/tjRBveldmg0m1pTADEw0EiMQ2fP/ChZwQdHd2kpCShW2wk 2U2YMxbjPruXrOJlcm5Q6bY0KhvU211HRySV5fOTOXHmEtu2bJhygTIApNvJqJaqCJXjhw/R nZOAT0m9WXWSpBkz5n6AeDRCTBM47DYURZlygfIIIN1OxrTUyHAfB46fRzHaeeDBB0iwyIvF 0sfXmNbtbqkgarFx6eg7HK/uvhl1kqQZM+YUSI14eeP1vRQsXc2SJQtx2sxTKlCeAkm3kzFH gK7ydwikLGTe3LwpN35Jut2MCgAtMsywJZ+kSA+dvYM3q06SNGNGBYDBmkTJskVYDILMLJkL JH38jQoARVHoPLcfjzmLX/zs50Ri6s2qlyTNiDF9gJzlO1mcbmTXnRsJx7RRz7XUlLN73zt4 PS7eenM3Ll+Qowfeoqa1d8YqLEnTacxwTcDVRNmFeubOX8gmp3XUc8mpaQydLufQkQHWbljH gX/7AdZVn6D39FGWzH8aIQS6rqNp2oeLlaRb0pgA0OIqisFMfeVZejetITc14fIzAsVkJzvF Tm9IJRoJo1js6LEIus6Vq8aKolzTFWRJuhlGBYAWHqY/kkB+RgK5Gzd9oPGP8PR1YEgr4tMP LOfkibM8+vkvUX++lKy7H7jS8HVdx2CQV4+l28OYC2H9tSd5rayDtWvXsWnVwikXKC+ESbeT UV/VgcFuDr1zBE8wdrPqI0kzavQwqIixZNenWT/Pgc1unWgfSfrY+NARoIu33/gFPZqTtw+8 fbPqJEkzZnQfQOj4fH4czgTicR27zTLlAmUfQLqdyAUypFlNjldKM0oIwTR/514XGQDSjFJb jhA9/m2Ert/sqgAyAKQZptbvQ216h3jFf9zsqgAyAKQZJGIhdHcTjk/9E/H6vcQbDt7sKk0t ANzdzbxz7DSBYRe7f/06jR2DVJQdo2vQf6PqJ32M6O5GFGcWSko+9oe+TezU99B6KoCb1yeY wiiQoLe7i5rzRwhGnSQWr2RTboBfX4wjPM08++mnAdA0DaPReAOrLN2uYmX/BGYHlnXPA6D1 XSJy8E+xP/L3GFILbkqdpjRe2dtchZa+gjuL0ygvL+PVcx5sS3egDelXevf6LdK5kW4xQkft PIPlrm+8ny6fWYJly9cI7/tvWB/5fyiO9Bmv1pQCYNgfIqj1MJTjIBwzs+2TT9NSXkrm+m1X MkCFEPI6gDSGHnBBLIApvQjlA+1DLLgHAi7ib/8v7I98B8XsmNF6yQth0oyIN+xHay/Ddu+L Y54Tuka09DuIkAfbfX+BYpiZU2ihxeQokDQDhEBrO4GxYOu4TysGI9atvwtqhFjZP8IMXCgT ukb0yF/LAJBuPKHH0fqrMeatnnAbxWjGdv9fonWdI1b16g29WiyEPnLEiXhlAEg3nu5pRbEm YkiYfKodxWzH9uC3iFf+J1rb8RtyJBBCJ1b2A3RPK7b7/lIGgHTjaW2lGAvuBD76XnGDMxPb A/+HaOl30Fy1016XePXraD3l2B/8GxSzTQaAdOOpHacw5d9x1dsbMxZivesbRA79Kbpv+qbc 0Qbq0FqPYXvwb1EsI/e7ywCQbigRDaAPd2HIWjKl/YzzNmFZ+zzhvX+IiAUn3TYSi39kn0Ef aiOy/79jXvs8Bvv7i7/IAJBuKLXrDMa8tSiGqQ2NK4qCaekjmIruIrzvvyG0sQsvCiE4XdvN V761hyF/ZPyChED39RJ+6/exbvkaxrw1o56WASDdUFpbKaaCO69pX0VRsG74EoaEdKJH/wah vz/hmhCCiy0ufnbgIovnpXOmdvy1LPSQm/CbX8ey8UuYineNmbNKBoB0wwhdQ+s8iyl/87UX oihYd/wJwt9LvPynCDGSatPY5eGHu8/ze09v5qmdJZRe6kDXR58G6SEP4d2/i3n1c5gXf2Lc 4qcUAEHvIHWNbWhajIb6BmKaTmdrI95g9BrfnfRxpntaUBxpYL++BRcVkxXbfX+B2nwYtX4/ 7f1evvvKab76qQ0U56VSlJdKOKrS434/K1lEhons/SPMix7AsvxTE5c9lWzQ1oZaKstPEbem kpaawHC/D69IwGaI8dzTjwEyFUJ6X6ziZ4iwF+uWr01Lebq3k7Y3XuQ77kf4wic3sWZh7pXn 3jheRzAS4zP3rkTEgoT3/hHG3NVYNn4RRZn4e34KLVVBCw6hJhWTZhigZNUqDvzgn0i55zdR W0rlSvHSGPGW45g3fnna2oNHT+a73sd4zLKfkpQVo8q9oySPP/vpcZ68s4j4wf+OKX0hhjXP o6oaMPFkzVMIAEF1XQPGhGwWLF/FkT1vs/X5r1J99BBzlqyTK8VLo4jwELHQAOacpSjm619q azgY4dsvneaRbcvYnpZMbP8fYX/iRxgcaQBkpZnITU/k4st/yYr8XKxbf+eqkupkNqh0Q6ht pcSr3xi56HSds4UHIzH+789K2bB0Do9sWYSiKMQqX0JtOoT9ke+iWBIQusrR1/+NCncCv/fF p6562FWOAkk3hNp2AlPB1utu/NG4yt+9XMaywiwevtz4Acwrn8KYtYzI4b9ExCNES/+e1ZZG GgJJBCJXvz6FDABp2gktjtZ7AePcDddVTlzV+N6rZ5iTkchTO0swfCCYFMWAZctXQeiEXvkC wttO8gMvsqIoi3P1PVf9GjIApGknfD2gKCiJOddchqbp/PCtcqxmE8/fvwrjOGtOKEYLtl3/ E9PCe7Dd/1coZjs7VhdwpKL9qtOpZQBI007tPI1pzvoppz+8R9cF/3HwIoFwjN96dB1G48TN VLE6sa7/Aoo1EYCFc9MIhGP0egJX9VoyAKRpJYRAa5/47q+PogvBK0dr6HAN8ztPbMJsmnwk RwiBNxy+8o1vNhnZuHQOJy51XtXryQCQplc8hD7UjjGrZMq7CiHYe6qRi839/P7Td2CzTH4E UXWNA411/F3pEQaC73/j37liHmdqu4mrH90ZlgEgTSutvwZDyrwrpyRTcaSijaOV7fzhp7fg tE8+NX84HuflixcYjkTYUbSAss73z/tz0xOxW0009wx95GvKAJCmldZeinH+1LM/y6q7eKO0 nm88t5UUp23SbYfCIX5y/jRZzkSeXL6KzfnzaRwcIBgbWdrLYFDYvnI+Ry+0fWRnWAaANG2E EKidZzDN2zil/Sqb+vjZoYt84zNbyUiefF6gdu8QPz53mq3zC7m7eCFGgwGH2cKKnFxOd7Vf 2W7DkjwutbiIxiY/DZpSAASG+qhu7CDs7efN11+jsWOAc6Xv0t7vnUox0seUCA5ALIhyldMc CiGo6xjkX3aX84ef3kJumnPSbSt6unjl0gWeXrGaVTl5oy6y3ZFfQHl3FzFVBSApwUpxXhrl jZPfUjmlcapwwMfZS60Y0wXW3CXkGrs4H06m8fAB8j/9tJwecZZT205gyN9y1YtgtPUN8w+v neGrn1pPflbShPtpQnCktYnGgQE+v3YDqXbHmG0TzBYWpGdwvqeLTXPzAdi+Kp8DZ5rZXDJn /Aro+tQCIDMrF5OxlewlyxisOsdrb/VjW7IdDX1UhW6lFUCkmaO2lWIqefSqPv9et5/vvHyK Lzy4msXz0ifcJ6qqvF5zCUVReH7tBmwm04Tbbskv4BeV5azNnYPJYGB5YSY/2lPOkD88ul+h 60Tq6vHv3j3FbNCL5eg+LwO+EENBAzsf/zSt5SfI3Lxj1Nygcnbo2UeoUfT+Ksz3fxPlIz7/ weEQ33qpjOfuXcnaRXkTbjcUDvHSxQoK09K5u3gRpnGuBn9QljORLGciDe4BVuTkYTQauaNk Hieru3lkyyIAos0tDP/qV4h4nOSHH5bZoNL0UHsqiJ3+Fxyf+qdJt/MGInzz34/x4OaF7FxT MGGyXKd3iFeqKtleWMzavLlXnVTXPuRhX0MdX96wGYPBQKdrmL//1Wn+7zNrCezZS6y1laRH P4ltxQoUk2lqp0CSNBGt/SSm+Vsm3WbAG+Svf3GCXWsLJ2z8Qggu9fdyqLGex5etpCA1bUoZ pfNSUjAZDLR6PRSlppNr0lHcA5T/9fdYumMTmc88jcH2/umQDADpugkhUNtPYrvvLyZ8vtPl 4+9ePsVj25Zw16r54zZqXdc50tpMjauPz6/bSLojYcp1MSgGts4v4MzFStI6ewmXV3DHki3U rH+MTQ+uGbv9lF9Bkj5E+PtAi2NInjvu8w2dbv72lyf57L0ruWvV+N/8UVXl1eqLdPuG+cL6 TdfU+IUQqIODZO0/xLKXXyNgs5LzzT9n13MPUtHYRySmjtlHHgGk66b1VGDMWY5iGHvrY0Vj Hz/eU85XP7WBxVlOAm+/TbyjA4PDgeJwYLDbETYrJ1192C0WHlq2AnP/AKrFjGKxoJhHHjGZ Jj0VUt1u/Pv2E6m8SMK2O4n+7tc4HY/xhMNBCjAnM4mqVhfrF4/udMsAkK6b2n4CU/Eu+EAD FUJQerGDXx2p4Q8eXUN6zXn6v38ES2EB1qVLAdDDYbp7e2jt6WZ1ajrmWIxAbQMiFgdNRagq QtVAVRG6jmI2Y7DbUex2DA77ld/1QIBYYxMJ2+4k63//KUankxVqnNKyEwxHIqTY7dy1eiQ1 Yt2i3FGBJANAui4iHkYfqMd45++//39CsP90EwePV/P1jCDW7/4N6urVZPzBf8WUlYWiKAgh qHH1s7+hlkcffoictPQrDVMIAboOuo7QBYjLv8fi6OEwejiECIfRQ2FEOAxA6meeQ0lIuFKG zWRmTd5cyjrbeGDRUlYWZfPLt6sYDkRJSZSdYGma6J4WFHsKimNk8itN13nlSA1n9xzjK5EG MuduJvHFFzEkJ11pnLoQHG9robK3m+fXbiTd4Rj1rawoChiNYDSOnlDdAcaU5Kuu24a5+Xy/ 7Dg7ihZgt5pYXpRJeWMvu9YWXtlGBoB0XdT2kxjz7wAUIv0ufvpODT2NHfzR9vlk7PwsxqSk UdvHNJXdtdX4o1G+uGEzDvPkac/XI8FiYVlWLmc6O9heWMz2VQVcbOobtY0cBZKumRA6Wudp hDKHvh/+hG9/6yUiRgt/8gdPkv3oQ2MavxCCvfW1KCh8ds26G9r437N1fiFnuzqIaRrFean0 DwVRtfdz1aYUALGwn+5+N0KLculiFVFVp6W+Grc/PO0Vl25tQgjiTdXE2+vp+uXbfL8xSs6O rXz1yc3YnOOnNNcPuujz+3h4SQmmGVoJMtlmY15yClV9PZiMBmwWE+1972cvT+kUaKCrhf2V vazJ1gkabex++RIBSwaWC/U898zj01556dYjhCBaW4fvzd3gvUB8xUp+bL2btcvyeXz70nFn bwAIxqLsb6jjqeWrsMxgqoyiKNxZUMRr1RdZlTuHeVlJHLnQTlFe6sgaBFMpbE5+EdaaPvzh IAvWrabl+HESd9yB1nZKzg36cafrRC5eIvDWHgwGA4kPP4Srz8Dflydx/70LuGddAbqmoWtj b0ARwFu11azKySXLkTDj7SPD7sBpsVDn6mPdohzeOF7Hc3eXYDIappgNWnmO4d5ett67hdID R9n2+ZG5QTOXrpdzg35MiXic8Lnz+Pbtw+BwkPrMU1iXLqW9b5i/PVjHZx7dwpaVBZOWUdXf izca4YkVq2bs1OfD7iwo4mhrMy+s20RhXiqXWgfZuHSOzAaVxqeHw4ROnyFw6BDGzEySHn4I S3ExiqJQ3ebiH186wudzK9nwG98cdQHsw/zRKP985iSfW7OeLOfUb5SfLpqu88Ozp3hwcQn9 fSHeLW/jj5/bKodBpdH0YJDgseMEjh7DUjCftC9/CXN+/pWLV6dru/n5wYv89tIeFmTOmbTx 60LwZm0VW/ILbmrjBzAaDNyRX0Crx82WBYX8ZM8FvIGIDABphObzEzh8mODxUmwrlpPxu1/H lJMz6ursuxVtvHWygT9+ditppW9gKvjtScus7O0mosbZNG/+TLyFj7Q0K5tf11RhMCisX5JH WXWXDIDZTvN68e8/QKjsNI6NG8n6H3+CMTV11JVZIQS7TzRQeqmDP/nsnWTYBcGhNgzZyyYs 1xsOc7i5kc+v2zjhyNBMsxhNWE0mWoc87FxTwL/sPi8DYDYSQqANDODbu4/IhUoS7tpO9jf/ HMMHcmneo+uCn799iYZON3/6/F0kOiyoLUcx5q6ecO5PTdd5s7aK7YXFpNknn+Zkpi3OyOJ4 WzOfW70BIWQqxKwidJ14dzf+vfuINTbhvHsXKX/1TQyO8RtpLK7xoz3l+EMx/sdvbLsyVaHa fgJTwfh3fwkhON/diaIwpVsZZ8rC9AwONtbhCvrZsnyeDIDZQOg6sZYW/Hv3ofb347z7blKf /9yoWwM/LBSJ8/3Xz5JgN/P7T2++Mknte0ufWjZ8cdz93KEQpe2tvHALnfp8kMFgYOv8Io61 tbBr+SIZAB9nQteJ1tXh270HEQrhvP8+7OvWYrBaJ93PF4zynV+VUZSXwrN3r8D0genJ9aE2 FKsTxZE+Zj9dCN6oucTOogWk3mKnPh+0MjeXd1saMVjkKdDHktB1IpUX8e1+CxRIeughbCtH ZkH4KG5fiL/5xQnuWD6PT25ZjMEw+hRG6zqLcc46lHG+3cs62nCYzazKnWAiqluEyWBkw9x8 yjraZQB8nAhNI3z2HL639mBwJpD85ONYlywZt7GOp9ft569+Vsrj25awY5xZG4QQqG2lWNZ9 HkZn6uMK+DnR3spvb946aimjW9X6ufP4x7IT1xYAoaEeDr5bxrL1d+JprSRz4VqK8sYeEqXJ haNxztf3sm5xLnbrtS8lqkcihE6fxr/vAKbsbFJfeB5rUdGkF6k+SAho7vbwnV+V8cKDq8fc N3tF1Ifw9WLMXDLqv+Oaxus1l3hwcQkJlslPr24VdpOZ5dk51xYA7RcrMaQXka10Uq5m0XL0 bQrl3KBT0trr5QdvnsdiMvDr0jp+4/5VLCvImNKoiQiGCJ04QeDIEUzz5pH6lS9jmT8yL6Yu xEjLvgoXm138eE85v/XoOpYVZE74+Wn9NSjJ8xBmO+ID25S2tZBms7MkY+J9b0Ub5lzjKFDu 0pUE6i/w+t5O7Iu2MpLv975bZW7Q4UgYo8GA81b5VtKixAIe9lV6OFx6hs9kX2SZY4AmYwn/ 8VIb8xev4jP3riApYfL66j4fgSNHCZ84iW1ZCem/83WM2dnA1P/2J6s6eeVoHb/31GYKcpIn 3V9tK8VYsOVyXI1s1+0b5mJfDy+s23hNr38zpdjs15YM53V1Unr6Auu27qCl4gSZC9eyKD8L uDWS4aKqSml7CxU9XRgUhTR7AiVZ2SzMyBx50zf4HFXoKsLfh+7tRPe0oLub0N3N9A9H+NeB TSTnLeJzi4dIycxFsaeh91cR6qhgX4uFE9p6ntqSz9ZFqRgzikddbFI9HgIH3yZ07iyOtWtx 3n8fxrSpzZx2pY5CcPBsMwfPtvAHz9xBXsbkuTpCUwn96vPY7/8mhsvTn8c0jR+fK2Nn0QKW ZGZPuQ63go9VNqgQgqr+Xg421rMoI5OdRQuxmIx0DQ9T4+qjyT2IyWCgJCuHpVnZ5DgTrysY hBCIQP/lRt6M7mkeefT3oiRkYkiehyG9GENaMaVdJl4+5+GZe9aybVX+mDFyIQTEw3R1d/OT wx3QXcbnsivIyS/GOHcT4SoPwTM1JGzbhvPuuzEkXXvdhRC8eqyWc3U9fOO5raQm2j9yH324 m/Bb/xXHs79AMYzM0Px2UwPBeIxHly6/5S54Xa2PRQAIIej2DbO3vhaTwcDDS0rITHCOyWcB GAgGqHH1U+vqJ6TGWJieSUlWDvOSU7AYjeOMfOigxRDhIXT3Bxr6UDu6rxvFloIhvQhDWjHG 9GIM6cUoyXNBGblw5A/F+NGecrz+CF97fCOZKY6PbCy6Ljh6oZWX959nu3qBu631JOTpCF3H NHcdxvxNI0ORthSUKebXq5rOvx+opNPl44+f3XLVne9Y1Wvo7iZsd/0xcHny2upK/svGrdjM 196Bv9lu6wAQQjAciXC4pZGuYS/3LFjE0szsq/42Go6EaRgcoNbVz2AwQIHTyupUJ/PEMMLT jOZuRgx3IcJDYLRgSCvGkF6EMb0YJWU+huS5KKbxz9eFEFxo6udf91WwY3UBj25dPOl6t1f2 03Vira349+zD43Kzd9E2+kIaX3hoLQuSY2g9FWidp9F6L6DYUjDmrsKYvxlj1lKwJaMoE79G JKbyL7vPo2o6X/3UBqzmq/uchBBE9v4h5mWPYyrYSlRV+eczJ3l4yTKK0m7v0b/bNgCiqkpZ ZzvnuzvZMDefTXPzr+peUyEExIKI0CC6twPdPdLQQ4PNxKMh7FYb3YYUWkkmMbeERUVrycwu xDiFVQ9D0TgvH66mtn2QLz68lgVzUj8yKIWmEa1vwL9nD5o/QOID92Ffvx7FbKaicWQNrZVF 2Txx11ISHVaErqIPtaN1l6N1lqEPtaPYUzDO3Yhp3kYM6QtQrAm8N14fCMf43qtnyEhx8PkH Vn3k+ruj6qZGCP38aRzP/AysieytrwFF4aHFU18K9VZzSwWA0OIQm3yFb10I2oY8HG5uJCMh gV1FC0maIKdFCB0RGUZ4O9Eud0T1oVbQ4igWB0ryvJHTlrRiDKkFKI40sDiJ6xq9fj91rn6a PYNoQrA4I5PFGVlkOxOxTjJPZXOPh3/+9XmWzs/gmV3LcdgmPz0Qmkbk4kX8e/chhCDpE58Y uWr7odOKYCTG68fqON/Qy7N3L2fDktFrZIlYCH2oDa3zNGrXGYS/H0PSHIz5mwlmrufb+7tZ UZTFk3eVXNWR6IO0ngqil+f+b3IPsr+hli9tuAPrx+DOv1sqAGpL36Tl9B4yzX4ybRppNg3T Bz6rUDxGJK5iMRkxG4xX9QEoVidK8lyMaQsud0gLUeypYLZPerrwHk3XGQqHqRvop37QxVA4 jKrrOMxmnBYrTquVRIuVBIuFrtYQB8428cy9JWxZmo/TYsEI6IEA2vAw+rAPbdiLNuRF8478 xDs7MWZkkPTQgyNXbSdZXUUIQUuvl5/srSDNaeOFh9aQNk4HduQoF0AbqKev6gjfKrOwI7GB +0qcmPM3Y5y7HiVpzlWfKkZP/gOKPRVt+VP88GwZj5YsZ35K2lXte6u7pQKgqcvDyepO+jwB BoYCeIaD2K1mMlMc2B0m2oKDbCicy/ZFReSkObGajRgMyuQfpGJAQbnqq6KTEUKg6Tq6phGK RvG53XhdfbQODPN6XYD5PV2st7lJ0qI4IzGc0ShmVSNkMROwWQlaLcQSEjCkpGBPTyc5O5uU OXNJmTcXh8WKQRl5LwpMPhOypnPobDO/PlHPE3ctZdeawjHf6u/Nyf+3vzzBM6iDSioAAAwg SURBVHcvZ8vCFPSectSOMrSuc6CrGOeuxzhvM6a56y73HxQ+nOKAEARf+iy2e/+c3f0hEswW 7lmw6LYd9fmw6woAIQQB3zAWh/NKh2o6+wAxVeWdhiZONbezMmMuhriBfk+APk8Q11AQg0Eh 2WklLdFOdmoC2WlOctKcZKcl4LRbsJiMmIyGjz7/FgI0bWQ24riKHgqie0d/U2tDXjSfDz0U RARD6JEIOBycido4mL6UT63IZrMjhiklGUNyCsbkZIzJSehWK8F4nGAsSjAWIxCLEohF8UdH HgPRkf8LxWIjEzeZzNhMJuxmC06LhUSr9cqR5r1Hm9GE0WBgyB/hp/suEIrEeeHBNczPTr5y 725dxyDff/0sX3xoLasWjB0Y0P39aF1nR06Zeiow2NMwzlmDMf+OkQ61NRFFMaAHBwi/8gU6 H/wR77Y08ZvrN2P5GK0Bd10BoPna+eeXjpOansazjz8ITE8A6ELQMODineYGshMTuad4Mcl2 +6jvJiFGcmmG/GHcvjD9QyOB0e8J0O8JEFU1rGYTCTYzWakJI4GRZCfDqOL0D2HxDGL0DI40 9GEfIhZDxOOgqigOO8aUlNE/qSkYkpIxOBMwOp34hYGf7K1kOBjhK59cR2769d30LYQgpmmE 43HCapzQlWCJEbgcLP5YlEA0SkzTMCoGTEYDBhRaOobpbQ2zY2UBS5ekERhSeeVwLS88vJoV hdlYjMZxh3ivvLaujvQfusvR2k+NpDw7MzHO3QBqlKDPxU8Td/H0ijXMSbr6yWlvB9cVAIGW Ug4NFRBvOsbTzzwHXG8nWMPjcXO4vhav38/O+YXkJzgRcRURjSKiUfTLjxP+OzLyGA2G8HkD +FXBUFI6nqRMPMkZuM0J+MMxVJ8fQiEynBZyc9PJnZNB7pxMMrPSSE6047RbxqQCw3vDm338 275Kdqwp4OE7Fk5pRGU66EIQU1WimkpUVQnF43iDEU6V93CsqpUkm411G7NQTXH0y/lZAnCY zSRabSRarSRZbSRd/t1hsWA3mbGZTZgNRoiH0T3NqJ1n0brOsNu+kexF29lRtGBG3+dMuL5T INXPf/7sVTIXruKerSPrL11PAPTs34/vwCFsVitWqwWDyYRiNKKYLShWK4rVisFqRbFZP/Dv 95+78vx7PxYLisk08mixXOlgqppOJKYSisRxeYNXTqv6hwJ4fGGCkTixuEZaoo3sNOeVU6u0 JBuna7qpax/ky4+so/gqhjdnkhCC5u4hUhNtpCePLCat6jpxXSOu6YTiMfzRCL5oFH8kgi8a wR+NEorHiGkaMU1DCDHSsb8cJJqu0xfw85vrN3/kMqW3o1uqExyKRjAJMJtMI53Wy3/wmWxk uhCoqk5M1XD7QvR7gvRdPq3qHwqSn53MUztKrit9+VYjhEATAl3oqJpOIBYdCZLLAbIsO+ea 1uy6HUxbALw3L+h7hBDvL4ig61cW0v7g7+OVcTXPTVT2tZb34e0+WP6HTfTcZGVMdx0nq99U Xuu9f1/L+/2oOk1Uj6nUfbrbzXi/T/sRYDyapk3r6vG6ro8MF07TkWG66/fePRHTWeatXkdN 00Ya1DQeraf7PY9X3owEgCTdqqa9V6OrESrOnycYiVFbVUUoptLR0YGmxbhYfg63LwxCo+5S BW5/BF2N0NrWNW5Zw4M9XKptJuQbpKaxDS0eoaunH4D2lhbiuiAWGqaispq4ptPZ2YGmTxDP QtDVUkdr9wCurhY6+4cI+zy4PH7QVVpa2hGA19VFdWM78Yif8oqLRNWJ73CK+D2UX6gmEvZT VVOPpql0dIy8l/6uDvyROHo8TPn5CsJxlbqqCnoGfRP/8YRGbWU5g74QzXVVeINRBro7CcV1 1Iifti4XIOhoqqGzfwihazS1tE76eQz2tFHb3IlvsIfGth7ikQA9/W4C7j5OnT5DOA6h4UEq qxvQdZ22jo5J6qfTUneJ7oFhulrq6B8K4HP3M+SP0NPawPlLdYDA1dVCY3svEb+H8xeqR+5O m4AWC3OhvIJgNEpV5QWiqk5PZwdxXaOq/CytXS6E0KmvuoDbF6arpY6Gth4mLFEIOptraesZ pK+jiS6Xl+DwIANDgcv16gEETTWV9A8FML744osvTvoXnKLg0CDugXZKj53DH1dpaeymvK6G lYuLKDt+lN6ICZO7mbaIjaqzZ9EDvZRWtrF25dIxZQ0ODHLm9AlqalvQPW1EnJlUnKmgMMvO j/71NVZs3sjht14nM9VOZYuLiksVLFpUgtU0TlwLHdfgIMdOHKO7bYCOjkaSE41U1/VhDPby 63fL2bBhOa+/+ga26AC9WiLhnmq8pkzy0sbvAA4ODtBafYbSsw0ocQ/uqIWKc+coWTiXl3/+ cxJyl1J3+gCJOXM4WVZBzNNOQ3eQZYsLxv/jRf30uoc4/O4hvH6NlpYWIm3VxPOW0Fx2kMo2 H8VpMd692E9jXSUZlhj/tv8sOzatnvDzcA0O8u7RY/S2dzHU14ohKYUL52rprT1PZ9zCyiWF vPXGa6SbIzQNK7x76jSbV68YvzAtisvj5fipI3S2eunoaMQa99IdNHF8z6+w5xSRn2Fn94Hj BAc70Oyp9F46jnHeatJs43/Xhn1D9HfUc+idk5jSkqmpbqGnuoKM+Tn86CevsnL9BiKdZdQM Oam+eA67CHD8fD3rVi8f/+K+0HC53Rw/eZSuVjdtHY2k2HXqWr1UHNuPMy+fBH8DJ7tMNFw6 ewOOAKEBKjt0tqwrwOZwoCsW8rKSiUQ1Nm/bwlC/C13TsSc4EVqM6oYm+tobCY+zZkJb/QUK lm8mwWzCbjGSkJqFw6xQdamSeMxHR88Qmi5wJjhQFTNzMlOJq2MXaAAQCCrOnuaunXejGMyY DJCdm4fQYlysqcfb04kvHAeDEbvVzPBgJy49k5UFGRO+18HOBrTMEopSLTjsVswJKaQkWGiv uYA3HKO9qx9V10l0OlHVCCvXbyfk7ZuwPEGck2eqeWDHFixWO+g6uXNyiMf8NDR10N7YRFzX MFntGBWorKol4unCHYhOWGbdhdNsunMXOgasJoWUzBzMis76ex9kodlFdU8IgYLTYSVutDMn IxF1or+h0DhddpZ779mFwWRFQZCTm4euqjz63PO01JwDBAaTGYvJgKuzEZG7moKkSVK0A27q BhW2LpmLI8GJEAZystOI4uRrX/0NSo8dRmgqtoRE0GPMW7gWqwhMeFQRQuf86TPs3Hk3itGC URFk584BTeX+Jz/NkGZDaHGsdieKiE3/ESAaiTHk7iN9/jKMET+rVy1gsKeHiDDS19nD5m1b mVdYxGBLFUpCJo899ihLlywmOWnst2wo4Kev38PWrWvxG9NJ04foH/JTsmknWzasIS83nYWF czl99gIF+fmEvINEsZKbmTreXwaf181QEFYtziJ9/jIG25sIxAR3P/RJVq9YQlpKMnlpCVxo 6qdkYSF+j4vEjDySHOMv5hYJh3D1u1i5aROBiEJRuolel4eshevYeedG8udks3jRAirPniJr 3hKGettYuWkbyc7xs1f1WBTPkAdjUi7ptjjL166jtbObeMzAJx99iCWLi0nPzscY7MUbM/HI o4+xctlSMlOTxi0PIOj30jvgZ+umEvTEeRi83bj9YVLTEvGoSWwsmc/8vAzKKhtZPD8b/6Ab zZJIZurYK9tC1/B6PQRVG4vmOJi/dB097a2EYjpWIuQULiM3O5sUq05rf5BFBXPxuHrJyCvE YRm/MxuPRRgccJFdspboQB+bNq2gqa0Hg9GKp6eD9Vt2kpu/CG97JUpCNoaIm7yFa8jJSPlw 1tJ7lcTndeMNG1m+II2c4pW42psIxHQSrIL0BBt5xSuJ9tWgmtNkJ1ia3T5+l/akj6Wh/i6a 2ron6Pzq9LtcE+6rq1GaWztA6LQ2N48a2JBHAOmWp8WCfOf//YC8RDNKTjELM6yYUvKpqayg sDCLuoYOSk+c4Ou/9RVqmjqYn2GlL5bIjpIs9h07T7YzzuFWC1/ensHb55sR9jTw9FG4fIWc GlG6DQgNXTGT7DBztvoS0WSVrlAzgx3n6epdyB0PPIHb6+Ps26+i5a6g4mwV25/7Hc6feJ15 OQ7Ka3ysXrOZeKSehKQkBtx9uP021EsX+P8o6yg0ZdfWEAAAAABJRU5ErkJggg== </thumbnail> <thumbnail height='192' name='QN 4' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nOy9R5MsyZUu9rkImark1bdv920FDJQBQzF89hZc0Yz8DfwBNOOGu8cN7fEP cMNfwt2jGcnFM9rYcIQNxl4PgGmgxdWqdFZlhnLBhcfx9IiMrHsbqAYG3XXabldVZoSHR4Qf P/o77OzszAJAVVVotIIFYI0BAIABggsYY2ABMMZgrQXnHLAWO1vbuIzOLy4ABiRxjDiKO99p rVGUBYyxAAAuOBhY55g3r18jz3NkeQalNLTW/jvOGRgYhBAQQnTGtdaCMdY5njF3rFLq0jn/ oWStXT0jrJ5Z//dwvuH8/1iktYaUEgDW5hQSYwxRFMEY458d5xxSSlhr0TTN2vE0/tAzSJIE SqnOu+mTBWCMAWDBwPw4WZYhy7Lf63433l9RFLauayilYK1FUZcwwQtL4gQ7sy0YayE4h1IK R2cnGOcjTMeTjQMrpbAsC0xGY/9QhqiqKpzMz6C0AmPuZpMohjFuET198gT37t8DYwzLsmgf DJCnGdI4AQAURYG6rrGzswOlFHg7T3phdP0sy1BVFbTWYIzBGAPGmP8+XKhE4eK47D420dDi CsdpmgZRFLlnnSRgjKEoCs/E9PNt4w3NPTyHxqFjlVJIkgSTyQRaayyXS/9s++dub2/j4uLC P88oiqC1RpIkKIqicyxdo65rz2D0rGkBG2NwdnY2eK1GK2hjoI1jEME58iSDtRZpmmI0Gg0/ 6N+TWFEUFnAvoqwrlHXlb0QIgZ3ZFtIk7UySmOEyuuyF9EkphUWxdDeZpCjKAsuyQJ7mqKsK r1+/wr379wEAy2IJLgTyNMPi/ALn5+eIogjWWsRxjN3dXQCAlNK/VJqDEAKcc1RVtXHRbFps 4bHflBHCBdi/BjEAAMRxjDiO/byH5hfeTzjnPqNsmgcd0zQNkiRBkiQwxqBpmg4DvOv723Rd YoA0Tf1mlGUZOOcQQmCxWHSkhLUWjVKoddO5diQkYrnaIK6aASTgRFpd116cMcYwm0wxzkeD D1v0PnvbQnrrJKTEbDL1Y80vzqG1RlWXSJIU+zdu4vmzZ7h3/z7yLPcL6tnz5/jhD34Azjms tfjq66+xs7MDKSXKslx/wE3TWcDhz007bng/4eKje+4fP6Tm0DXp/D5DEFVVhbquL1WZhp7x q1ev8ObNG9y4cQO3bt1am1f/eqSiTSYTPHr0CHmeYzwee1VHa+0ZsP9chiTQZcxH4zDGUJal fxYkhekYzjks1qUtw7qEvkqSxhgsl0sAQBLFqHWD8Wg8uPj/GMQYw97ODs7mc1wsFgAq5HmG Gzdu4smTJ3jvvffcwzIGs9nUL3Dauy4uLjCdTtEohUrViGXspdXQQu0zQX8uwOrBh8xE3w+9 nE1qSKiCcM47u3z/ekPSYuhvpRRevnyJn//85+Cc4+joCK9evcJsNsP+/j6+/vprlGWJTz/9 FKenpzg6OsLNmzexs7ODv/u7v8PJyQl+9rOf4dmzZzg+PsbDhw9x8+ZNvxlq7WwvUpH7Ovwm pqDv+jYCMVX/uYQbCpHgAlFgp3wrDMAYgwUg4wh5mkFK+Y0X/lUzCmccW9MZJuMJjk9PUNWV 26VGYxTLAlVdYX42x42bN9BojaapkSYp3nvwAC+eP0fV1JhOp0ADbJrZkCrRp8v07f5O3n+J mxZxOCYfUCOJOd71ZZdliel06vX6ra0tKKXwu9/9DrPZDHEc48aNGzg4OMDt27fBGMNXX32F s7MzfPDBB9jZ2QEA7O/vgzGG3/zmN0jT1D8fmou1FlmWIYoiFEVxqRFL9zEkWYeeF1EsI8AC Fu4YUn3oGQ49rz+UOABsb29jOp54Y+xfAzHGIIXA/s4uJqMxtDGYbW3hiy9+BwB48P77SNMM dVOjqmssiiUAi7v37uHo8BCMMUxGYwghOg+d/nHOB3fXd2WKvlQgkR5+PmRc02LapAZt2vn7 1yfK8xwnJyf++p999hmm0yniOF7zRn322WfY29vzHpyyLFEUBZqmwS9/+UtMp9M1yaiUgjEG cRyjaRrM53PUdT04Z5rfkJoJoKMChvZGeEwSx0jjBEkUd44lSXTVUoAtl0t71a6lb4OKskRZ VaiqCkmSQGuFWjUdT08cRYijBOfzOS4uznH3zl0IIdZe2DehTQuVvtu0UIf07yHVKTSC30Z9 qUW/n52d4eXLl9jf34e1Fufn54jjGPfu3cNisfAL/uzsDHVdI4oizGYzPHr0CEmS4N69e3j5 8iUYY0jT1I8TEqlsl91rmqbevXp+fo7xeIyyLN/qZqVxhzagcMPhnCPLnJZijAGYc9TIP8CN zIqisGmavv3IPzEZY7BYLtEohUbVqJtmzbCLZAQpBKSMoJTC61ev8P6DB7DWdphgSCXZtMCt tc4l176oSMiOCKcX2GgFzrh/GZtUpL5UUEq9s9rZXwzh3CmWEOrmW1tbAJxdJITwLsjlconl cukZb2hel80hVEWklIiiCFVVdfR0ay2m0ykuLi42Mk5Il0m8/uZBn1eqRp7l2JrO3jr+JuLf hmHxbRDnHKM8h4VF1S7m/kvTRjspUVeIIomdnR08f/4cnPON+vbbdnF3DFA1NRqtsKxLFHXp xbFjEMcAlapR1NXavMNrDRmB70qhCgegs7C01mjaTYH+EdMrpVBVFZbLJebz+cbgVf8aQ0Z5 n8h9Oh6PMR6P/TNrmgYXFxdrUm+TmrnJyA1VqfA8bQy0Nmv38k2JL5dLlFX5Bw3yxyLOOXZm W9jf2XUPwwLcqz4u0mxh0agGjVLI8hx1+4LCaGvf89JfkKR30m4nhEAaJRCMt7aJRKlq1Mo9 fCFER19VWq1dq/8Ch3a0y5gk/IzOCZm6r3tba7FcLlHXtZcWtEtvoiFPTJ+GVBRSS8J5AFjz coX3EkrFoXsdmldI2mgYa1DW1TtJmE3EkyQBZ1dvXX9bxBhDlmbY3doB5wzGugAKYDHKcgjO kcjY2wZ7e3s4ODjwQbD+QqxVg0YrqMDAUlqjUg200d43LThHGifIogSRkMiiBMroNmIZ6PmB N7u/4122+w0d/y7PYmjscHFRwOldxxtiwKFxiYj5jTGoqsp/lmXZoFpFY1PQVVsDuL2sQ8a6 qHCtms67CccAHJMVZYHfl6SUEnEcv/3If2UkOPcpGwBa20BhnOWABSQslGqQ5RkODw68cRaK zErVUFojj1NYuJdirAVnrA3Ja6RRsnGRRUJCG4NKNZ2dTWntXHo9Co3YcHGErkb6ri+1wnO+ bRoytIn6hjjNsWkar3KlaYqmaSCl9FH3kIq6hCbDV6+cGAyt719IFI1jJmttGwxLvH1lW+Yg quoao/z3ixD/+Wz9PYqiCFnSNd4ZnHpCBjEtrJu3b+PV61fe/el1d70SnYILxDKCsca/HGst lFawxvhdKNyJkij2ag9vxxZ8tSOGtEkXHlLBgOEYwTelod38su9C9SVkUFJvws/DuZ6fn/vP 8zxHHMfeMO+rdWVTw7TXEVxACok4isAZhwWgjIZBd25ZkkAE760vJYuq/L3VIPnnYgT3iTGG rekM1WHtE6fAnOi01gWFhBCo6hpJnKCuXIqBEMLrppGQqHUDbQ04nK4fycgHz2rVuBdiDZIo 8UlabrdiiKREGieQWrgX2I5/2ZyHDMqQCUK/ffj9VdKmd95f/JxzjMculjKfz9eSCwF4iUpJ iEniEhSNMWuet0Y5qco5RywicMYwnbpo/nw+hzYatWog282IVPO+it6fv1IKZV0hT7+5O5// scTqt0FSSmzPtjqfcb7aHfI0g1LOCL55+xaePXvmjVrGGKR0izV8wJGQUK3uCcB7eYwxkEJ4 Ea2M8owkW9eoCET0JhrSs8OdbdO5m3by8Pu3ff62MULinGM2m3V28XCMId99nuf+/KrqGqdO bWmQRDFGSYZISh+fcO9CIksz7O/suWfJOAR3buW+CjpkiC+L5TvdV5/k2w/5101pknQeCBl8 WZ55idCoBknc7uBt/r3WGgwMWZx0Mlsp/bbRClVTe11ftguB9FBSdcKX8y6La5OHY8ijQ+ST xd4yft9L1PcK0c8hZ8AQlWWJuq57dRjrEoqoaRofgSZJG147tKcAp8ZSNipJbWKw0LNG1wuZ LhLS1w1QKj1dq2kab5AnSXJphsOfPQMA8LuUMcYZwvnIBc20QiRdqjSsRZzEePXqFe7eveuZ QLDurk0LIxISol0oSmsUdYlISEStcRuJ4WISWmBvo1CXvUwlGvq7P867XIuoP7fwvvsuTEqS 7G8wQ2qetS7ukKYpOOc+NYP+9WsvKBW7aRoUZYnRaITlctlxUvTvrcM8rdS11sJGMWIRYbFY +GxaOreuayRJgjRNPVOF9GfPAIwx7G/v4uD4CICLA1wUC5RlCQQ3G0cx9vb28fjRI++hcIaw 7rz8zmJpVSMpBIw1K2YKrt03zDbtNH3jsb87D7kM+zvguzyLcKcPJceQBKHrkkQIq+UusxOG 7BiKKpO0CCvOgG5AMEkS5HkOrTVOzk7RKAVjnRtVcuHnuonxw+vTsZcFxCjNnAKilNQH/Bl7 gYhIf6TqNJcigc7id7tT5QJpbXTYGANyAfdVmT5x5mIL9H3/pQghkOf5W3X0ocBQ/5p9Zhxa bENj9/8OF/bQvYW6vJQSk8nknQzvjaqElMjz3GeLbpo3GcoXFxc4PT31wczzxYU3kMPr9DeB TZvMkLToH19VFcqy7FS3/dkzAOBudpTnSFsPBP0EnGuUgfnEuelsht29PXz96BEuLi4AuN2r n4/TN/rC30M1gl6QMcZXpm1a5EPGW/izP2b/98vuf2i8obmH4xKD0O5Jwat3VavC46ick9QQ otAQpvHDdAwKMI6SDGm0em/hddI07QTWQgrtgv559JOySQF422Q+n6Msy+8GAwDuAYzzcecz l6glwXi7A9QVtNFI0hQP3n8fZVXh0aNHKMsSsvVK0Fi0ODbp8/0HXtd1R7QShQvvst140zXe dlx/p6M59683NGf6zFqXNkF68qbr99W2kAko94eMz5CyLMNk4iS0UiuDlVSSvqeKFnWSJKvM T2CjI+AyVYl+aq0778ZaFyX/s7cBQkqTBLtbO7Bwu7Tkwtc4C+70+GWxdHpgkmJ3dxc729t4 /PgxxuMxbt686csBgXW/+NvUEcaY94JY62qUKY24LMs1QzA8L3yBQ8f1F0k4r5A2LZBNO2UU RZ1sTsr/p52yn3W6STL1DebwuKIokGWZs8sGnuPQuKPRyNdvUzJff/yQ2TcR3VOSJGu2FmPs uyMBAMoTShEJiSROOgX+9JB4+3tZVdBtsOzu/Xtt+eV62eMQbUryWi6X3q6gtAtKSKP50bGX 7fr97FVihr4k6Y8zpFK9zY4gr85oNPKMNx47SdqvE+lLlXCOSZJ0JE8oTelcsrf6c+wfBwCL xQLn5+drToFQyl1mt9FnoWs2vIaXKoNP5c+chBDYns0QhyIPTgpY9we00VDa7XZGaefpCRb2 NylLJFJKYblc+iIc0js3SRSiPmMM6bNDen3/mKHF0Tcg+2SM8akMi8Wis1OSJ2c8HvsIb7h4 wnmEgS/OuUe4oGuTnUXjb6K+A4DmOMTwQ88wpLqu/Rz6jESq3ndKBSLqi22XrQkYo3vHCVi4 XJehEsk+De18IZG4JX06xMwJz3/b+H0VhxYFSZYQ7YLUiv6xfUbuf963TcLAEalr5CEihA26 DmMuhYHwmEKmJXWLYFHompSVGqotQ+pU/9mOx2Msl8s1F21fbQo/BxxDhkmeQ5vKd04F6pPL zwGsbR8yXHqEhW3zfSzquoGB7eS5XCZaN3luQqIXHaZGhGMOvbhL76NdFOQ5IXUjjmMf0Osv pk3Ga/++QkZqmqYDKEb30l/8URT5XCtyAZORC6xUREo7oc8uM8LD50A/KYWdbJH+3ENVkM6z 1nrm25R9Gz7v76QEANwNzyZTcHGBxXLpF0VRloijGNYYMDAkcYSmaQbzeDbpqUPf97+r6/qd JAad+66GLUmV/iLuL/whRqUFMwSARecu22dF1F+4o9HI69Tz+dyjyo1Go45UYIx5rxKpWJts EWutt0MojYEY7fz8vDP/TfYNfU7SMbTlLttovtMSII5jTEbdAI+QAqMsh7HW+64PDw9x48aN jn5L1PfEvM14C19EaANsWpDh75tUpE02QX/cTbt8nzjniKKos2uHYwNYc4eG17XWdor5Q5SJ cE5VVWGxWKzZMEPXy/Pcq10EvUgF9XEcb0SRoL+JCUhtCw3mTc/SGPPdZgBrLSIpMc6dS40z DlhglOfY2dqClBJHR0fIsswDPg29oKFFe9luFNK7eCze5T5CeluMYuicPpGLsX+ObTeG6XTq baPw3haLBc7OzlCWpd+pRyMHotY0TcffrrVzNBR16YCXL5GoxDyELEH3N51OfQ4PYwx5nmNr a8vXH4dzV0pdWtzV3yA4599dFQhY3fBsMkWWphBiZUAmsUvEunPnjsfGGfJubBLZoTpBD3PI PTqUNtxnnvCa/d32berTpvumOQ7FFEiH34Tvo7X2Xp3QOA132b5nK0x/mEwmfmwCCSjrCmkU +2TCkKIowng8RlEUmM/nflyK2NK4QgjEcexTGkKpQnAvRJcBn4Vq058NLMq3QaSmLJdLr668 qyrRF+mbPDhvG4OMyU3HX6Y3XzZ2uPD7Y5Cbtq8mDDFleEye5zg/P39rtmuappjP54iiCLVy NQBvI1rYwGYXdJZlICRzuncC9g19/X2bKlzw4THAd9wGICKfPD2U0F9N3pS+ijK0MIZsgL77 dMjjEurO4VjFAKJBeM1QIr2L7TFkDwwtJML2HDpmiBGttd79epn0IgpBiLMkxdbWlvcUZVm2 dnyWZX4TINCu0H9P/8gdGs4rzDoN1bX+BjW0+K21320ViChEiiYDiaqXCPj1MuQzonBhherA pujxkN7viz/aUkvOhjGLhs4fkk40h3Cn22Q0bzIIN9k54T31mWYTcc59bj9jzEMqVlXlVaM0 TT1SNDEXPUelFM7OzgafZZqmPmWDMeaZob/j0xz7RTlDm9P3ggGA1cLTWnvvR39hEtGuHvq/ w59K6w4CXEgd/ZKtuybpd8kFRMzR1MN57EOi+zJGCY/rn9+fX3jPb1vQ9P1lx/afY+i6pEAd Sdksy/z3k8nES2GS0n2JSfdGefwUkT47O/OYpZuedRzH0FpjNBqhrmsUReFVTrqf7wUDUOWR D38HhRpRFLm02EAC9HfE8PdK1Q50K048AkVfMgDd0sG+buqPYRyKKW/A9Rd9eO0hvXZNnx0o qxyyUfpSLNS5+/dD31+2+ClaG9pRlAsVuiSttbi4uFiTxvQe+hItlKxN0+Dk5ARSSlcEX5ad xMPwWdGcKUEvfCZhvhLwPbEB4jj2bs4hnTt8ERt1dlgP0gS46DJhgvZpSIUImYhQLGiXIoSz WjUomxqNatbGGdK9LzOu+wtjEwBtn9lo4YVMRdJzyJ4QQgzCpYf6eJqmyPPcF8OQ3dU/Pswd GmJyax26HQEk9xm/XwAUSpew+Us43vdCApBxRXqnUsq7zMgeoCQ2Kp4YcolarHT+WtXQxiCS cq0+uL/r0meMucKcWjUOarF9YUmcYLFcuJLASEIbhlorpDJei2i+zQgdsjs2GcSbGChUd4YW fXh/FDvpj0WMw9iqMwwVqFNgq39OkiQ4u3AZoISvN85GLmrf3jf5+oUQkFJ2XLlDRvCQChf+ /F5IAGDVf0tr7X3WRMQEVBTTN6hoV0xk7DuWGOvgUAjpYOic8DNayK7YXjjArWDhxEmCKI5g 9IrxqgCaJXyRNGaf+i++zwRDBnJIQypTKBGG7IlNzEK/E7wKZYFSbcRisfBgvkRSSnDBYexK 4lT1CiGOFj/ZZ0IIjMdjTCYT396pr76FzyRJkk6K9/eKAWiR93Ptw++pAmlo8dDPWEa+nWsk u4hp/XOGdGc/BnPwi7SgYxkhiZ16oJVuF4vDKGVsPaDVZ4TLPED0c1NNcnhs39ge8oz1rzkk 8ehvCpqFCYKUcDfkVRJ8GFgs7KZJ1yuKwtcN9IvipZTY3t727zNMzOsct/FpfAeJEq7IYAuN YWB9txt6+YILCMFhlHupcsMLGxLxNK7gHJxH0Hq1qBlzHW1ggaIsApHvItRZ3M2j7++6myTC kEo0dNymz/oq12VjDqlm1rqkOcaY9+KEGaj9GMz2dIaT05UKJNh6r+Hw7/7GENoNi8Wi4yIm 12xI3xsJALS7bxx3/Ml9IoQESsUNVSKiWMbgLXLZJjVjSIKEf3PGEQX58oSuPB6NIIWEaaUA GAOh3Q2NPbTohhbmZTt/f26b1Ki+ejF0TH+s8HiK9JIkCrGHiKR0IGSRcLZVvzKu/3PoWdA9 UHpLfyPruLzf6al8x4j0UfJR94ly3EPovo7YB2EFbV5YQ/pw+PfQefSytre2XJdOCxhtIFjX EzMkCcLr9L0n/e+HJNsmKbDpWqFxPuSK7DOKtdajZoSqSF3X3kjun/cujDvkZevTkIEOOLvw e8kAjK0yGDdRuPv3/5Eac9lD71elDRmK/YVIuxZFOEdZjogLVE2zghPv7X5D0qbPCP2YRD9y HRrpQzv6kIox9EyHzg+fGakjYWsmkgzWWp+uQnCJfdfq0NihhKACHbrP8Hj6nSQP4NK1v1c2 QEhk9F5GlDUZpg3TQxRcgG/Q/99FPSDqIy+Qt0MI4X3dF4sLVLaCiVawjEPjhi9+CEpk6Jzw +kPuw/744XWG1K2hc+iYcEFTYhuppfP5HMa4VktUTmph22xSC9Hbq4eY3Frrk+r6NsOm+/je MgBwuWFIHotNRhbnHAzdHZGaa1y2QOjvTakF4QImH/d4NHaBssY1PjbWIouHQaTCoNC73mef YYdUtqHzNhmmfVshfEZFUXg7LMsyj5wRMqzWGkIKQAGAQ+fml9gZREOVcZfdA/A9tQG+CRHY VfgANy0ubTSqxnWdIbVi44PvpS3Qz3DhUFalG3vl47Z22J05pHaFYv9t9splqk//59AxfQrn QHOjXgOEylcUxZpRLKVEnuVu3IEpE7P0+7714xV9j9WQPXTNAG+hIS/QkIFLLzD07W8y0C7T o4d2VMB1oxGcQyvl+2f1VZZN1+u//E1pEfQdfRbH8RrcY3/umwzlvs1EpJRCnuc+ghyWO1pr O2qREAJJHK/1Aabx8jz3GEbAqlMmuVqzLBuERQnpmgHeQlprn68OrOf/EzHGXHdzMGi72q03 7ZD9hdE3kvtGrhQCadJCjzfKJ+INjXuZyjI0l00lm2RUhgU7m675tnnQ+QROS0ZvCPES7uhk BHPGIdh6wZAxBovFogMSYIzxqe2ELDcEt04MBnzPAmHfhIwxKIoCVeVQpal+gIziTe4+189q GD+/r2/Tyx/a9SkOETaN4IxByghcAiqoggqpb2NsYqxN90x1wLTzF0UxyKhD1+x/FnqXwnuj +RRF4VOiqcSxr9Nba0H/hbSpBDVE5OvPLbQPSApdS4ANRIsAcC/r4uKiA+5E1H8B1CtsU6VX uCD7rsfwuzRNO/g89PJiKRFHsWvlGuTJhOP0f6djaF6bGIDSRGhBhlieb8uz6d9raBBvYlKq AQglbOii9HMPzu3fa5ZlXg1K0xRxHHeeW98dCjipvlgsvlvo0N8GxXGMyWTS0VH7xfNhjklf benrzkSXLVRguCZWGQ3dNukAgCSJAbaCNt80fv+zTcYszZXanfaxg0IPC31GO/yme7lM7aJz Q9hy+ny5XKIoCtc3LMsA6+oLCJMoTJ8gEKzpdOoDnKG0HWLQMKHuWgV6C5E/fqiWIHQ5DpVU WmtR1CVGab5RagzZAuQCpcQxbTTKuoIUEpFo+wdrIJa84ynqU8dly4bdg+F1N/3dR2XbNE4/ Qa/vDBjyKFVV1ekxTHAtjDHUdY1F4VpdwTqPUb/1qtYa8/l8rb8D4EC8qqryUptiHuPxGJxz FEVxLQHeRmRQ0UMDWknQdpI0xiBJkrVOMwBQNJVr5GYv7xnc/y40EIFVD2Nq1DcEtNX3INF3 m1y2mzxGQ3Ps02V2RHgPtOiG7pF+UipEmLQGBK5OvkLsI7solMLhOKEUCYG2wnmEhTRC9MNr 1zRIjDEvgv3LtxZVU6PRDgyXcPZDJomF9DYB0Sa3ZfhCCQSXjmPMpVBT4U34ObAO1x7u/P3P NqkFIYWL911o03hUfzHErET9NI3w+oCDs8+SFGm7ydACHmLm5XLpHRTUF4yIzgk9Tdcq0Dck ggo/Pz+H0hq81SMJm4aqnai6TCkFxl0H9KGXDmzWm8OG3sCw+hDuZH0PU0h9T1CoFg0dS8eR uvG23b6vIvXpbThCm6Bl6NqxiL03ylqXK0TuzyEPGtkyQ4xC9de+Nvj7DIz1+xCpJ4vFwrso Q1sgTVMP81FVlWvPZNf15yEfOX1PY/V3xKGf5PsODcOhc8LPgC52/mX32p/fNznGWpfXNKSf XzbekOfmyy+/xGg0wv3798EY6zTPGDq+P2b/GZCEu5YA35BIHZpMJr7bYLgYy7JElmU4PDz0 ab4+lTkcZ/MFgFCduezYlox1KdpDHp4hpgFWSXDhfb0LDalwm3T88PrvQkNMTp9TKSNjrIOm F9pEdF1KYqT7IyndlzJpml4zwO9LnHPvIiWoD1IZqOj+4uIC01tjCAgkLA+COfQi3N+SC5fr E7AI2Q4WgFINZNujeFXJtmKNcCHKAXVkaKGGO23/u5A2SSoAay7McNzweEoSpBkzxqCNHgwY kltzSE189eoVDg8PMR6PfSsq8s7Rc7fWxVAWiwWklB6msU95njsmulaB/jCiRUl6Py2q58+f Q8yA+ek5NFe4s3MPMU8Hk7sE7VSt0Sml9A3+wADdtNmR2NypfTWW6OTO9A3U0HDetOhpwfbv s2NLtDsxZ6ueZta6zM3VwjeQXLSfa8jAiN+kmhGWUD8WQo1ATk5OfCtWarsEAF5HLzcAACAA SURBVHfu3FnNIUi7DqUDSe/QyXAtAf5AIoP14uIC8/kcWZZhe3vbNYxuLiAgoa1C1VRQZvVC CWsTFi61mZHrj4FHDGVVYVkVbZG8Qs5zKKPR1DWYWIE71abEQfkSmRxjO9pz6kKUrC0goqFd v78YG60Qy25LUbJ1aEylNWwL7RiqI6EKo4yGJcgYWDSm8d9TinN/DmFDwUYpgLUSsoVd39vb w+7urk8jEULg9OwUn3/+OeI4xgcffNBJYAyLmgCX3WuMwfHxMba3t68lwFWQMQbniwswsBbi +wxJkmJvbw//dPy3OC6PcDd+gF1xyy+OyWiMqq6glEYWJ52FQAutVg0YGJRWGOUjJEmMg8ND MLFSD15XzzGupjhlh7gzfgCAeSboqzx9phhylV5mOPfVIQowjUajlbrWNM4DwxmsGS7LZMwh YhCggIV17cwZw7yco2EldpMbHSahGgKqHehIQcZwfHwMISWeP3uG/f09XJxfoChLbM1mkFJi d3cXQgicnZ2hKApsbW3h5OTkmgGugqy1OJ2ftYaX8IvqV2f/hL85+Gv8RfpDzPg26qjCR/mP 3KKAK3RRSgFmvUyRaKEv8LvTX2EsZ9jLbkGqCFwG7ZyYwYk+wCiaIjH5StRzcSks+ZBq1DdY rbXI8gzW2LVmGoCrfzDGIEszNKpBVdfY29n1jQKBVdIa/R7q/hSo4q2rWHCOL+a/QVEV+PHe z/11yP3cNI1DerCtpGznGkURKGJB2KSTycTfk1YKJ8fHAICdnR1sbW35765VoCsgxhim4wle H76BtXUb/dX4x6O/x3+Z/xUSlmLCZvjr4v/G+9kniFiMxjb47dGvsZPtYife2zju4+UX2DY3 MFZTvFm+wN30AxhtnHsVQCozfDD6GLVuOr7xvn6vzArCJUxBttbCWON2W8592rWxLsJdVfUa Op0nC1RNA4uVXVDXNbIsw7JYthAyAmVVQnCxZviSdAil0O38Ps7ECYCVp0ophfl8jkY1aLT2 kfU0SmCtQbEowblAHEXgXGA6ncK0qH1x7HCcZtMpgHX4xGsGuCLinCNPMywK12ROWw0Lg22+ hyPzBv/S/BOWqoRp96qD6iWm9TYO6teY7s4gWBefFAAarfBe+hCPqi9R2QJbyQ4YZ1B1A8nb TFVYVHWNWjVrWZMdI5Kt1KpQv2eMQTDhg3V5nrdVWm7XZ2DgvYBYx45o5wkAWZT45LzJeOJ3 eFr0YVpD+NzCuuSM54iieI0xSF3L23jH/OIcSqsWmjICYFFUbctYMIxHI4xHo7Xrhc/3WgJc ITHGkGc56rqBtQYJi/DB6CP8X+f/AT/Pf45SK9xK7iFmiVN/5BRH9WsXJMKwwSq5wETM8Mns L8AEg+QRiqqCEBLWGHDhIBYJo8gEpZLKaEgrO/EBAJC9gnof9W0BqJbLpQvcubsCAJhL+gJw zqHtyvOjWp972D/YkOGrlWtWHtgBmwr86ZmGjMy5QBInOF+cd1Q8Lt3cTWuHZEmK2WS60cVr rWNuKeU1A1wlEaiTtU7M/tXOv0WtS7xWL3EjvYmfT//KvVQAN/Nb2M9ueJhFY9ud0q7vWFob WMsArgEGH1022sByBgWNw+YltuQeRtEI2hgYa9AE7YnKpvI4RomMIHugU76ABizwSGFN/el7 kQQXMMZCsLZxX2/RlmqJZxdPkEc5buf3PUPAWu8WDeMGoXpijIEyLuVEchddV1q1wcf19Iok crlCVLw0ZNNQ3THldV0zwBUSiW3yQ3PG8Yvt/wJHy0PspTchWJvgBuCsOUGhF7iV3XMgsYDf HftpEFJIcCEcQpxhqJra5RhpA1iLEkuURYF5foStdAbOjPMgMYdGrUwXX6fRGmAMVitoYyBa V24/UkrXH/LkAG3cgpiVrc4JYVZely8xa3ZxUh+iTEpEPHaeHbTJdi1DyJ66Q3Nw6Httqglj qMvKAxKHZK31i79pGhRlgcl4ZQgv20aIlElKaOHXDHDFZIP3whnHNNpCko9grfHGYiQjPJ4/ A1McO/E+OJdodIllM8dM7nQWPxltlArNsVqMXHAYbRCbFLvjm8h4jlo1rppNCNStq3FrOsP8 fA7JJRrdOGxSxsC5gOTOCDbG+GDbpvgB0PUWccZQaAXGnV+/n14BAHvpTbxonmKcjiEgO1iq rJ0Ho3QGrHonhM8wVIXCUkjdBtooPYKiwRRApLrpZVmgarodMReLBfR1LtDVEmMM1hgfDRWc OyOSMah2TVFa863RXSzUApJFsLD457N/RGZGOMzfQFiJ3XQfuZh4lWhoAVprwYXDJ5rKGbQ1 roGH0T6VQmmNoirwsnrqdj4e405+r1Vd1nPuw93+skDaak4WsEAcdXsZkEqV8Rwfbn2KPMux WC666k5vTK21lwb9iHdfIuV57jtGhmOS4W1hcXZxjkRGaOoaRmtw2TXm5XU9wNVTnq0KMY6X R3hVPcNSr7ql02vfTnZxd3TfNe+GBbccN/gdXCzPMam28fLsGZRRbcQ17FTjyP9tnOGnbauO sJXHB2AAt/ji6NcYlVPM6h3IMsKj+RcAWv2edXXvfrAr1PeHjkmjBHmSrTUJId8+2RW83Qzo el6Nahe9uwZcDUWgRoYUzqff5TKcUywjGOvSL6y1SJMU43wEAQarDWyQZn4tAa6YnIoj8WTx FdRSI2cTHNpXiNIY+/Ht1oct/AtolILSCh+Of4gF5hjXE1RNCcuBpmrQMAVj2rC/FCib9YCU v7abAJR1hqPgHK/qJ9g2NyCY200TpKiaAvPmFNNoy+3WWOX+hDtkp/kFbMus8LaFNRZGazSq gRArI5UCcSHzLBYLFykeaApIMQrnLTIecW/o2QLO9qCySVJ/+hIiatUfZTQarTBKMiRxAsuc p6qsSjBcG8FXTowxHNVvwAuJ2i5xbk8hEYNXAhdsjlyPodWqy6SUEnEUIbMptrEDlSi8KV/h vnyIRCRQRgGIsKxKxDbqqCAAYIz2UCBxnMAYDYt2d7dA0yjwnqDP2Rgn1Qmm0dZaRmaow5Mx 22gniQiO0VrHDLVtHMR7e46UEqZ2apFlQNLCthhjMBqNNkLKcMM7iXKh+tO/X8CpLmS80/gE qEtMEQU5SDQO4NQ9Y60vM71Wga6YGtXgvJ4jggvY7PFb0FBglmFhLxDFEbI0XSuhBNrMRQNs iT3EIkatagguWl/+MKy5EAJatanYbTId4AB0YxkhjVI06BqA5/YUYz51yWo99SEkFyW2PtAV 7uhSCCStqsEY/FhpnLj+Z0GPXlrMoU4fVpGF7tAwjnBZdxplNM7VHCfNkT83tE2IMZTWncBf LCNXydeqQdcMcMXUKAVYhnN7hsY2eKmforIlNBQSnnr3X+jGM9agbCqUqkZjXAakU0lcsEhb AwbmdepwwVoAXDqkaq1dnCCJYu89uZHcwSI6x7k5hbINTswh4jRBKnJf0wwAtWoGO14CzqYg /35oB5AniDOOWLigGyWvkbeH7jPsAQAENozt1kNLIQbhGGks+v119QRfHf8Wx2dHOKhf+u/D DSWEjwyvzRn3kuFaBbpialSDO/l9/Kr+Je7bD/HaPEPGRmhkjb30BmIRdXZSQpfgrVdkZeS6 HmSNVjDauAS4gY16pfuadiFGnaITbQxup++hSC5w0Zxji+8i5RmMcrGAxjRgzj8LC4tF7ZLY BBfeLiCjOoRgsdb6FOV+nCCcm7XW5+CT4UreGjpmU5bqZahyTxePkJgMS3aBJ8vfQUQCN+M7 nQAZBQH7jBvLCBGkM86/2eu9prdREiWIRIQfbv0E8/gIMhVgGcPd/ANY4zwTjWp8VFZygbTF FAVWu12tGwgukMcpmMXKg4KB0sfW48MER1mVKKqyC9JrDGZyCzei28ijsQuqSQEuXBMQKuan QhHLAAPrv6PCkziO0Zi2HJFzZzxvCGARRVHk26OS/h8uyFCa9O+r75INzxlFY1gYbPFdZHYM nAs8WXztr9sf7+XyGb6c/4vPxYJt0Teu6sVfk3tJDse/RholeH/8MQCgVE4H19ZAK+flqNpd nzMeuAw5mF11jTRtTCFOYkRComzqNYwhYGXYAYCQEqppuu2fmIsewzo37SjLcXR60n7VTW+I ZeQDUpWqkcg236bdpSkK22hX3FIrx6i+fWxgiFJgSimF8XjcuVYYNOurRv2/h2yUD8c/wBPz Nd7w59jBPgSEh0TsxzEYY5jXZ9CNhho3MNbgoHiF2/zedT3AVZLWGi/evAJn3O3qbXCnaCr/ UiosMYu2oLRu81z44KKmJtnaGKimcV1TmrKFY+kKbsmF02ktfEKclBIRlwBjKOsSxjjvDOMc SRyjIiS2YK7AasEVrbs1j93a6KggcMZq0zTOOmfwjb+HyFpXKukahMdrO31owNJnBDND3xN1 mKN1zR6XBzhXc9xM78I0rj7B3wtaBwI0SlVgJCf46uy3mNTbOEuOrlWgqyQf9AkWS9OG9unv z0//GSfNoavdbdUfESxoBufCo9wc6kR58uyfUf5P/z2q/+V/wMXJEwCrDE7nOWkDP24ikFyg 0hW+Ov0czy6+huVt9VaWowxckVQLEN4D586WCIG4/P0xV6rodv6uB0tpjUYpVE2Nqq56464M 5BB4mMbt2gBdgIBN0WkGd95WvIv3Rg8R8xiRjDqN0BnaJukiwUhOAADTZIZlOscknlyrQFdF 1loclQc4bg5wO+8WaIe71l/MfgEJlwKcRDG0Ma2Xx71QKWV34TGG0pTAv/93+PD/+P8AAP8y GsH8z//baueE27WJWQQTYGA41Ueo6gq7/CaO6jfYk7dR97BEKcxF90AkArxTax0sYdXUHfSK 0ChlDKhaVc/PSzcQPPFz4lGb19Trz9yHcv/i+F8AxvBg6yFivmoFNWRoh/ijNLYFOtApqlGd +e4mN3BzdAdn5ck1A1wVHZcHePrsKYQVOJSvcSO57b5gXb1WMtl6V1aLNo9Tp+u3HpUQa4gx hgt9BonARckDIxFo/dwM2rqIqrMJDBbLc+zwG3jNn+Fh9EPAWjRqFYkVjLsqKrbK3hwqzfT6 fJCoRnlOaBevNqZ1g3Jwwb3vfUh9UUr5/mB9D41lFjO7i8pUOC2PsSV3O3PoM8Gm8bngkKxr l5yrM5yrOfajW60D4roe4MqoMQ2kleAQPgeln4ZM5Bptd18koVCT1Ah3173oJl7/+/8VX07+ d5hRjuh//HeIuETUBnXIqDQ66KrCOaIowYU9deqBjHzejc+nsQYE1sMY6+DshCnNVH7pYhFO 787ixCNXA44Boh5+aXgPnfGYQ4XOsgwXi4V/Foy5Qvo6K2C1xX52fzB2oIwevA6NIaVEURbA SstCqQu8PnuFiZ3hRfoESZTiZH58bQRfFVlr8ZsX/wxtNW5n98CwysW31iG3ga1arMZSrpUI NlqBYaX3hwahEK2hCwvOuukLtCgbpcAYEMkIL8onOFue4uHsE3ArXQ6RdXW7lCejje4EzYiR wt8Pqlc4L+bYyfewnbjd2LSSSymFZVmAcWf7SCE7doFqK8DCccNdnHCUSFUJ4wNN2wGn/4z7 LlP6vD92WZZI09SfU6PCs+MnmNgZFskcx9UhmL7OBboy0lpjKnb9Az9sXiMyKRKeOgsQ7YsC 84YnMQAZi37h98AQfesixjsv2xiDp4uvUTUVbk/uYhpveSNzUV2gbjtWJiLqjEdliFVTe3ds LKNOLy66zqI+x1Tv4ELNPQOEizxPMxcb4A6tTrSoGNa6zvBUq0xGb79egAJsnZwfZvFs+Ri5 GuFWftcbu8C6y5TouD7AWE4RM2czGBg8XzyGthr3Rx8gZRn2Zzdw0czxXvYQVV1CM33tBboq EkJ4vffpxSOoucGbxQuf9JbmMV43z2DgjMpGKx+sIuPRRV9Xu3E/jE+L3n/G3U63Y27guD4E 5dJUdYUPJp/gw60fIpUZqn4GaavyJJGLL7ig3MBNcYa74weo8iW25L6br7WdndkV30gfiabF T/OkPJ9K1V4Chr59Ur2SAP78QL3CpNlCtahxoc5W0w4CYUQWFqfNEY5Pj/Bo/oUft+QL6CWQ FCM8XXyNpmmQ2RFuRHdglYNPfMNeXDPAVVIIgmvbynJX52vx5cHnmJZbeFk88S+QVCQChQp1 5n7wh84JjVQOju3xDo7lAfbiWygbV4heqQZaGzBw7xqVLXP1054jIZHHKUSQjhAGxRKR4l7+ AKM4b5m26eDuA67yitq4EnnE7Fa6JDJeS3Pu3yPd9068hxN2CCVrZHy08fjKFPjt8a/w8vQF TvghdrMb/ruJnKGWBY7xBjey252I9ok5gFkCO/bGtQp0lZSnGaqzCnvyJo7tAfbELZRl5RaG BQoUEBCwuu1WEicOnUCITosgBO5NANAqwLpsQaFoD9yWexhhBjQWlhvUugZngGqcPaCMgjUG SZaiKAskceLVMMHWK65CIvhGYww4XMBMtYUqYQKbMjoowhkeqw1Jrfn0hzw7mRjhw+1PYbSB YLJzHF2jMgUeL7/ErrkFxhmOucBOvBd42yJ8uP2p2xCqChBB4A1AzBJwy68Z4KqIMQe3LRYO Y2dP3ALg3IJgwJ3JA8ybU+zKfWfoCgEhBSLt8um1dv55coUCcMXvjCHPnV6rtYZSBuS3p13X AVhVYIKDM+7VLm0cMoRhbvnJwPA22gIwnaBdfzGGrYvIl0+F+0QrA3+VgGct/By8vWItjG7W MEc3uTelkKh13RmDfp40h/jtya8wxQ5esMeYYIZRMoYyGi/LxzivznF7fBcAcF7PMRM7SG3q r3Ejvo3no8e4mM+vGeAqSQjRcTNSerA2GgwcM7kDoMWv0RpKLREJ1/vL2C5YLEGCpFEQCOJO KqQybj0/3egopSBPJhPUbeO5snFRX4fkvFJRZDvX0DvTz8rUbbqGQ1kTeLp8hFm8je14dzUn xjouTkFp2Qh3XON7HIc01DlmxTAGr6sXUGWDnXTPV68BwPPiCUaYYmHPcW/6HibRDLkYgzOO UpWomgqvT19BWYVb/B5O4kPM0q0OM+8lN/EVPr+2Aa6SXOpCAE0O5wo0tqvbM8ZaycBgg+Q3 2ZYVkh8+EVFnh2ZYlRoOYesDqw7rWZqCpxavyic416dtZVnXviD3YwhvTsfUukHTFpxrq3FS n0AtNd4sX64ZsnTvXv2QLpXj8PAQtanw5elv8eXZ5zBY1UEcHR2hrmvM5/NOUhypVq/KZzha HmBcbeFw+aZzjx+OfoAmrnBjegu3s/tg4Hg0/wIn9RE+mv4An+7+yLlmBTCPjrGd7/r7Ikp4 ir/c/bfXEuCqKRICjV7h5KdphrJaZWbGMnL+fsYQc+kRlIF1FWSogRypEM51ar2fnUgIgeVy iTiO8fzsCYpiiXl0ipvZLdeStHVLCsYRxZF3Qfb7dClFjOt095yNUaQLbMW3PRKDpnrgABCY 7kNrjaOjI2RbKYSS0EzhydPHaEqFO3fu+FZS//AP/4CHDx/iwYMHePz4MQDgwYMHePPmAONs imf2KzzIPuw8o5Rn+PnWX/m/j8o3mNTbOLFH2JrtYCTHeH/6EaSQ3Z4EwfwAYBSNriXAVVJV V7C2m9vCGcPO1rZfuFSlJIXwMIX90j8qHQwXZSdlAHYNCxRAR306OHuDr+a/RWGXOKpeo9YN DAcMgysMh3FeI5eEhDiOvZdECOHsCcEhhKtZthzYSW6iQoXX9UsoqwHBYLn7R+fTP7qnkRxj fnyOm9PbODk8xfvvv48nT57g1atXqOsaW1tbePjwIQ4ODnwTjKOjI2xjDzKS2LE3sJPsdaUn 7zbnvpnfxjKdY290w98/s2wt0Bg2DiG6lgBXRNZaqEa5gm0rfM0pjEWxLBAJ6bI27apIBW2j C0o6CyOk/SS6kJTW4Jx1QKb69Pj0K+jKYMbHmPItPCse4XZ8v+NLZ3AAWpR6ETJZGsVolIax LWxJmzJxULyGUQr727daz4+P83UkmJQSy+XSqVZLhkk0Q5Ika+2USA0jWPO9vT0HuZ5liBBh Xs7X2p2G5wMAg8Dt5D5g4WuJKa0EgEfLCJmGvruWAFdIobeEyDV/cLXCYRDLBZWMz10JdfCh 7u9h9Fcb3bnGEN3M7iKOY+RsjG22jxfFY3DOkcUp0ihBImNEG+AQlXFpzUDrvbGrhhRLfY4z dgwpHJJDJKVHYAtJCIHt7W388pe/xO3bt8E5x97eHoQQ2N3dxWw2QxRFeO+99/DZZ59hf38f QgicnJxgf38fr1+/xuHhIaZTB3JLVWskpUJpQ5/TT4tuSWWIMRQGGK29bpN6pUQN85qm8WC0 su3ZRfg/6EUyJTh2d3exXC7Xdv3Q9RfurrVq4Uiw8t5QzywAPs0BsPhi8WscFm8ghcTPpv8V IuGyUaWQreeJ+6Z+QFugX7sO97xNfqPsUm0Nfnv6GW7yuyjSc3w8/Yt1l2g736IoOjn/l1G4 Iw99XtU1kiTGkXqNveSWz/IMKTy/qmukgQSgsegdhV6raxXoColzjtFohLOzM6RRgmVVQhsH y8EYQ5q4vKCqXqUmGGtw0bZXApzvXwrR0V9DFyVrI6u0OBqtkPBVaoLLMeJtaaPFJ+MfI5eP sSV2XTSWrTqr9H36wKpPmbUGUkZojPJZrdZaaDQ4M8fg5vJGe1EU4fDwEEIITCYT39x6FGD2 M+ZSv+u6Rp7nHSYnstZVt71cPMViuUA9qvHe6KH/jhLzgBXDCOpK47LOPZH9EP59zQBXTD6r 0boXYIFWjbCIBxrXKWO8j54xh7cTJn8prRzIrRDgbcalhbMhKPCkA9WKQHSNdYay5AJ3kvec P9+aDipFn6y10MYZ6MYw1Kr2UCywLpFvL7uFRX2OB6OPOpFf+j10ADx69Ag/+tGPMB6P8dVX X+HZs2f46U9/isVigdPTU4zHY1RVhTdv3uAnP/kJXr58Ca01PvroI9/07sGDB4jjGHvxLXDx BpnMnerYbhhhKjX9jKIIZVUhag16ejbh3Kjd7DUDXDGFgSFn+LpWooJxPF18DTBgN7oJGI7a lDhVR9iL9jESk4794BPmWphzpVctjlQLa069dxvddPJHGVvBfXDO2ujxKgu0n2BHP7UxLnVi QHWQQkIZjf34DnaSxuvZfQpzlX7xi1/g0aNHePbsGR48eAAAmE6nvpn4q1ev8MknnzhbJc9x eHiI9957DycnJ17qUfVYwyscz4/wsvknvD/6GA8nn5Bd7lW5kGQs8HrxAnEcQ1iJrXhnzV0M XBvBV06MMf9wYxkhi10IPpISsUigFxbP5o9hrMFR9QbjaoaD5etOdxfAoTI0rc1AoqTjCrXW J5n5BLw1Pdqibv35lGodLvhQtSFj11WUdesR6BjOGMAsXs6f4s3pa5yrs44U6BvUL168wO7u LqqqQhRFODk5QV3XePbsmW9UF8cxjo+PPWY/tZm9efMmhBB4+dIF3ubNKXbsDczYDk7UobuG n5tjgqpNBrTW4ndnv8Kzi0f4+vgL/KeTv8eXi8/9vEK6ZoBvgagLOQDXK8xaGBiM5BgNKnDh XJiTaAsn4gAJy1FSny9yzzHudnxrXbSYuQou2xrWSWtgCs4RiQjGaGdkt9S0UsK0BTn9gBnV zVZNDWV0WzCz6lDvj7MWsA6LnzJHwV2BiUDXExWCXRljsL+/D601fvrTn3p1RmuNjz/+GIwx /OhHP0KWZbh//z6UUvjZz37mG2UnSYLRaITbt11p6c30LppRieloip/M/rLLbO3/nepJYAQN DAzemOe4xx/iy8WvO3N1Ek9fe4G+LTLG4MnRI7w6foGCL1GqJe5N3sd+cgsRj6CN8UjPjDHX +RGAkKLtfrhqKO0ix0AsKArsdu4oyK2pqgpx20DOtOdQeyEGBm2N60fcli+WTYU0ilE1DSTn sK09QXifpFK4gJtbVGkUO3+9OcPB2WtEcYSHs48BrNsUYUUWUejRGuo8GXqRViqe7ag3BJwb Sp5wfKLG1Phq+Tn++uBvIDnwl9v/GX40/UVnjtdeoG+ROOc4VceIbILn5XN8WX6FndE+DqpX GMkxZtF2B3WBC5cGrZSGFqvEOIeEHLQ1hUWtFVLZhf0DujUD3HDAalg4+HNYC61N62FaqUNZ kkI1LkuzqLVvQ7rqXWY91HrdllyWTYkMIzS2WgsyEfXVJwp60fyIqCu9MQYaGrWukIuRN+Zh VxKF0C9ojH4EvZPYZwU+Gf0Yu/ImKlXi7vi9zrHWWtR1fc0A3yY9LZ/gsG71e1j8w8nf4r9O /xsc8NeY7swguUATqhtwL7uoCoyz0Vr+D+AS4hIRdXbBPmmtUesGYPC7uYMLcYtQCNdnoFYN EsZ9VRp5r5xNQYvatjk1AkVdgYNhJ95HGS+QixGquoaFRRIla9mp4WINk+dCKeBzm6Dw6PRL cC1wa/sORnK8niNlN+/4xhrUSvn2T2XjUO12k30oqVCWJYSU4JytpNs1A3y7NIknUKLGDt/H TXmKUpZYRufIotylIUjuOzoC7QtlALMcy6LAKM/XMHMAdGICRI1WsI3T4V3zOvd51C5ezlw7 0zRNUZausbRoDV7dItCRqtPXr40xMIz5WgPBOFLuepnVrHGYP72F2WeCvtep/3dpSkgdY8Jm ONdnGMnx2ljh+P3vKLIuIXyNNbl+LVwZ57IsAM5WAF3XLZK+Xfqrm/8WSC2OzGu8Jz/EXfYe 3p99iGmyhbPm2MMS9iFSAAbGGS6WC19oAnRTmamxHZEL/hCWv+tSE0eRK3Zv3adZkvoKr7jt H+ByglaF7n13IpV3MsaQtLt1HfQLSFqow7KpsaxLLOvSqyo6UEn8nQ0EuhhjGIsJklGEU3mI G/HttWe5SdoRSS47zB4F9yf5qiWsYNzVLDQaaZJcG8HfNllr8eXxb1EcVnhjXkBKgZi7biaf 7vzYBcA4x0Wx6JwDtDg82iBJYp/W26jGwy2GzaIXi4X3mWvjdH2Xh+TiqZWJEgAAHppJREFU EmSQ1nXdyY0xbSBOSOGP1W2+0UoVcvj/Q0QxCgDeWI+ERFGWDpJQDqdDDHWUBIALM4exBiM+ wev6GZRWuJHeQcqzVfBKrppru8RA1yiwVs6WcXXW8PdBeEVFWUA1CnHscFcnk2toxG+dGGP4 cOcT/L/z/wesZFioCzzc/RTGrkBurXEuRt+JhXDQATDBUVQVxlmbcx+qF0GcnxLB6JpKa5cz JLhvOkeGqJTd5LUQiJYoRIYu6sojWBtrELU7KqliSWukxu0CBWPI0qyz+w9Fi8MWTJGQWOhz nM5PwCzHQfoCO+UtCCbxunyOj7dc3hEhQFPzQG00rLaIhFv4wnBfhOTABrjHUM3SDBWrkCSJ T0K8ZoA/Eo3FFDmf4Ii9Qcpzj8JAC4OQzqjBtWcI5lyjy2IJmUi8Wj5DKsZQtkFTl3hPPkSW ZD5lmFSPqnEemkoZpFHs1acwr4iIskw7toaF761rrEGjXY6QJMxQa8GCBd2oBkVZOnCstjbZ nWs7Kp4QouMCpRiFV5ksAweDQORaO1nmMf211qjr2jMN0OYzGQNlGwg4dzK3rHWXSm/DAMDF xYXDKmqfVdM01wzwxyDGGD6+8QP85uWvcSu5t2bEevdloH9baxFx6VITADAp8OLiKcbNDC/t E0zYFkaY4gm+wqfJj3xPLvL/s2CcPrDUpsxLYOVnj2XkMlqN8dFoCwtLBiTQdrZxMIyMc9cr WDgQAMnloKfKo9yFxnDLCBM5hZq5Hgi3ojv428V/BCzDTGzDGO0jxzKSiNF1AxPUPG+lURRF eFU8w0V5ge10B1O5jSRNXKfI9trj8fjaCP5j0TiZ4Ic3foyEpTC9tGdjDZrWhRfm6kRSeh0f AHbSfczlMfJ4BA0FDQc9WJYlZBQBwu3MeZwijROHOM1cEGyT+7BPndJGdzCAVe6MJLUN8Lo/ 4OyRSDrDkxLuKMbh77MHwx7+Tn9vyV3sJTdhrUXOx5jxXaimwRcnn6NB4z1c1lpUTe2bhjRK oW4CaBkGnBfn2Db7OK1PXKCwDeTRteq6vjaC/5hkrcXp2RmM0XhVPsdOvIeEp77CC9bp3sZa JK33xsJ6wCvBOJIoRlVVqHmJhb7AjO0iS9r3x9odnKBPrGntgGgQ+IpIKbUGWQ64Nk3z+gwJ SxGJGMYaP69wHBqXpAd9HsdurnSsMQbLsoCQbYvSQOKdNSd4fvEEXAt8sPMREp66z8rH2Kr2 wCHAJhZTu+3KMAPGigNQ3tpWiJjDOz2uDnBSHuFmfheoObI07dgeVXPNAH90stbi8PwNPn/x G6RZhg/GH3W+L+sKYAxJtFogYfqzaoNcRmlYqfF6+QJplOLe6P2OWkVp0korVLbCOBq7GoEB P7xSCpYRqgVH3bg8mhfLx0ANaK5xe3oPwsaeCRljPqZAfYqpsEZZhWfnj8AYw73xAwi2aoNa 1bVrp8TgEfEqU+K3R7/GBFuY8BnK7AJ38wc+KPeqfA6lFR5MHqKqK0i5kjB0TBLFeF2+wPn5 HDKJcH/8PqSQ0FZjXpwhjmIIJhDxuMN41yrQH5kYY9jOd3Fn+x7249udHrzWWjBpcWoO8Lp6 gUq3aBLe9+/gSgDXGvXl4hm29T50YXGuzrz6QhiejXb2w2/n/wlHzZvO4q+bpqPCAE6nrxtX bD83x8ibCbb4HnbsDRyWr1xMoVWFjDG+E0tYyWatxWH1Gkk1QlSmOKoPOvELarwRLkLBBFKR 4dQe4oi/xn7bW8EF3iTu5u/hweSh/wx2ha0quEAaJyj0AofFa2yxPdRN5VW3L85/jc/m/4BX p8/x9OwRDFadKhm7Loj5k5CUEnv5DVRVhaKhVkIWL+qn+Nvjv8FFUwAARjLDv9n7N3iQPfT+ eUFRW2sxSWY4WR7ACotMrCqqlNZY6HOcVAfYTm7go8mPkfG8k4TWz1+LWmhz26ZOJCrFOc4R I4GBgQxaJvWj0P0uLdtyD8/jx2Bg2JeuDmCTS9QZ+zEebH8IZVZYoGHiHO32ilLEV4FuVKrG hapwdP4aqRnhVfwYD/KPPVSjgMQeu4UcEyzMOc6WZ5jGMwBt7fW1CvSnoaIocHpxgkenX7qs xDjGX5/8R5RNN8FLco7/7s5/i0bXqGonEWKZ4t7oQYuEVoBZjiRAkKuaGo/Of4ddcxNH/A3u jT4A0JYAcuEXsg8mtapLJzMTFq+LFzgtjhHLBA8mH3aKdej8cJGSDbCJGGM+SxRAm65tfOJb 3zDuGNCtPaNUay95zxlDwyocnx4iQoxkFmM3cvAoSis0TYNTHKIxDWJk2Ip2Vp0urxngT0fW Wjw/f4KTl2fg4Pi1+kf8RP7n+GX193havYBkAlWL5vbD0Uf4VP4YvNVYFRosorlrftEWtYco CNZaPF88xfnyDHk6wW68Qk2mReZSB9oeWm1LIcYYKo/Vv3KhJlGMSjU+1aDPACEj9TF7wvsF CN9UeZfm0DHhXEMJYFqbBoz59AzRqkln6gTKNtiR++Ccu+IY7dyh5CKmlq6ED3QdB/gTkrUW Y8xwmB2iMDWsAiqUUFbjZ/lPIBjDr6pfYcpn+FT+uAODEiHGqJniZfEUt9P7azsvYwx38nuo k5udTo3WOlxRMOfCLFUNDrdzw7C2Lhm+fiBuvUcua1O2rVZXHp3+/WijvTep1EsIJhEFBfvW Wg+8ZYxB0zR4vPwSMMAH04+9h4bxtrhFGy9hfLENGOJeW1cAmIqtVW8Ca6G08u5Y6ouWtAFB 3cYMrm2APyExxpBnOT6JfgghJR4/+hr/5+l/gLEAmMG96B5+kPwAMYsHMYAiFuO4OkXz/7d3 rcttI9n56wZAAAQJUpRk3WxLntF4MpNsJtnJ5XcqD5CqvEGeI4+QF8iL5Hd+pCpbla3drc1k N7HHY+tiy5JsiRRJ3IHu/ABPswFRGs+M5bFsfFUuWxQJQHKf7nP5zneMDLZduj/6znyRn+N4 egTBBAbWGnyrD6AMkG2rBdsykOUZ0oJmgpWMznIgdzIrLuUwjXnhqJAl1aC+yyva88zvPktO MZqMIHiB7aVPyik5qLpMnPOSlj2OSqYq8YmyTIla5UWuAmYpyxZOKSS4edmN042Scw6ZC5iO VRbZLv/25yfhT/x/bPAjwVi5k7Vmha5f3vkrPB0dAJAIiggty0GOHAxX+9S0mCg1avH5jK6n k8dw8w4mcgyeGej4vpJq155C/UULjKrInDHFBQIwm0MskMhy2DXphupjlQiTdIweBohFhCCf wG45lffoRvNw8CWkBCxWxiCtlqX6mw3TADCXcWlhpvyWF8BMjGtRgU8IoabYEK1Ed6eMWbzC OW/SoO8DhBB40N3F32//HSyDY5hN8Ovo1zgqDjGRw4XUBSllOeyCLWpiAdbsTRQoqdGmZSpB LFoM1YvNrwmUChC9jq9iilhE2A+e4CI/hz2bX8DZvLFEV7yTUmLTu4dx6xxwC/Sty8rM+r9t 7sDmNiQkoiLCb85+hf959Tv8++m/4VnwbUUyXkqpiGz0te4i6SllIQSkEKU7NJN4B0piX5pn au5acwK8B6CF9vXq3+BB51M8D/dnfvwWvj37PxxN9rHB7ytX4Fy+QiDH+Kr3NUQCGIaphu7R 4tjytrHevguBAhar8maSLJ3JsRtgDMgkYJgm0jyrqE/QQn0xOUAvW8YwfY3EHsA13YVUBvqc zR184j+sLFSiP1cId9rnOTi+C/+IOIuwbX6GoXyNKAkhvHI6Tb1w9zJ5Dpe76FkDiJmWUZ6X 03AYSvExPqN46+S8tu2UAfFMQ7QxgPcIjDEM3GUsOYMZ41LALvbR4yt4lj1Cjy8h4yk68DHg n+IPB9/gk95DDAYe7FZLzQaghVhKCJb/xaP0DKfTYyy5K2gzH3mRw2nZJd3CKN2b1mzusESZ pgWIY99ClAUQvFDjlTjjsCxroY6pnuNXbsc1LZwAIFBAZsDn5ld4nP83XOah0+rOq+HaZ0+L F4ijBKfyJR4uOei0egAkuOQqQM6LvJyQORsDqz8L/a6BJgZ476DvkAwMfqeHUTHEF71fwLXa MC0Th6M9jPMzPOjuYjqaIk1T9Pr9UgTKLIdsqFbGGYXiaHqIPCvwrHiMX/T+ejbWVKMpc67k 2uk5hBBoWS3csx5g1DrHmrEOAxaSWb9tlmULfoISetFNPx3qfrt6LwwAElM5xjJfw554gnvW zsLrCSkwYHeQIoFkRLdmSiUjzTMAs9GvWs8BcawoZdxkgd5zMFY20ySdBHmWq13sQe8zAGVO fWV7FUmSYDgcIpoVmQaDAYxZ5xS5DBnLkMmyUb6MB7hKETKUDSz1IRkA1OT4nrk0mzRfQBQC QR5eIrTRMxP0RX/d7k/G1nMHmORDRGmE/eAYkfgV/mHzH8HAKyzVDeceTvgR1s1NeNxXyhLq HVJCiKIytRKAUpao0MObQtj7DfqPGo/HqhuKUBSFkgtnrJRcT+IYw+GoXFC+j6WlpZKEViR4 Ee6jY/TxenqMrt3HhreJNM/BATiOg4uLC4zH48o9hBBYX19Hq9VCURQzxYmyg4thsTyJDlrc +u5fz+HXv45FhP88+w/cb29j1/t8/ruYLV7qUeCzBECcpTD5fE4zFdrAWMUI9PuRAFdjALcE QRAgjuPKa4wx9Ho9RFGk/F7a2YHSaEajEcAYBsvLsG0bz8aP4YU+znCCLze+AmRpSHarhf39 fdy/f1k/h16nwR11Q6Rn0f3sOpXhOHoBgQJb7e3Kten9YTHFRTbCmrMJg1WrzYUQGKcjnE6P wLmBDe8+PLsNyDKrU3bPZbMMF0ccx2jZ5UhXtzXPGo1GBxBgaLfvgGPWXPN2/nsa3DTa7bbK XFRy2oaBTqeUEEnTtJwDNuu68n0fvV4PQgicnp5ieH4OzgwM+StYzMLx0UsA8wZ1vc+XdnXD MHD37l3s7+9jc3MTrusCmA+d0BtM6hke3RhMbqGQ852e8vAAkIoEh6N99OUyDrKn2Onu1lKd AsP0DH25irCYIBYhXOmWc84MY1awK/uUqbchn51SBCEFkn/9F+SDAbx/+mdI0bhAtw71U4BO gPrYoeFwWFnU1KSiCkU1NeUkSSrN8tR3C0C9LoTA/v4+1tbW4HmeOgn0ym490F3E/qyfDAAQ FgGenn2LO3wD09YFPvEf0k8DCtTTPMVJ8gImL8luLctCEieQHErNgmQgg3iKjKXoGF0w7eeM sgsUEvDsHoTI8To/aU6A24R2u10GtLPsCwW4ixiYtNAoNUo8m0XBKF2PClr6eyitalkWtre3 8eLFC0wmE6yvrytJlUVCXVcteDqd9GcZZ0PECPGseIQd+1MAwN7kWxSywHZnF6/iE/SsPjbd +2BgyESBIi95R2Vxex4kx3mE4/gFbOHiojXEA/8zSAgcB0dYce/gdfQK4+gAhcjRzQZNJfi2 geaJ0YJe5I+7rltNp9aMgf5NO7dpmkiS5FKunD5LxDXGGO7du4cwDJWrUR+PStfT2al0HcaY Cth1AzG4iT5bxirfwDA6h4SEaVgwuYWX0XOIUOJwvFfSoUUxy/KUg7Sfnn+LYfZaPftJfIS+ WIHHusiTAgXL8b/j3yMKYxxMniGIJ3CTLgQXCJyLxgBuExhjiktfpwPo76mT43RKsf4+AOp0 qBeI6ulLKaU6Kba2tvDy5cvK+zjnsG1bCVe1Wi31p14Eq58Oq6119P0+otYUa+1NcMZx19vB TncXQTEGB8MwfwVplNmdV8kx9qffYZqN0ZV9RHkIKSUu8iEuwhHO5SkymYK1gL3xE6RxjoPi CaQhsLpyB4kX4E/X/gJfrn/VuEC3DeTT085Pw/F0bj1jrKJ/A8y7tq6SJdfpCoRFLg1RmqnZ 3bIs5YZJKXF8fIwgCBQPf3V1VRltPYCnr4fJGUbREJvt+1hqLavnyWSKRMT4Q/5bDNgqHo3+ gD8ffI04jdATyyj8BKyQ+LT/OWQhEYQGLMOC4zgwTGDTvIfD0R76bBkRC3C3u4213iYmxgQd d6Y92gTBtw95niOKokol1nEctejINRqPx5cWus6Y1I0hSZIK0awOWqyGYcCyLJydnSEMQ9y9 e7f8vpR49eoVXMeB7/vqOff29rCzs6NoEypHj7lRfXfxCEvFKs75KT5b+kIZyWGwBzty8ST/ Y/kaBHb7X6DjdhEVAT4ZPITBDGRZVpF7pDjpt69/haX2MuIiwrJ9B58uP6y4j0BjAO8lrtLN 1EHZmiCYa4oSBbjT6UBKifF4XOHq1P17z/MQxzGKolDyiIsMoO5iUVPLdDrFyckJOp0OlgYD PHv6FJ9//nklM1QUhUqh2ratYg3d7TpPXuMsOMVSewUrzrx7bZyNcDB6BikkRuIcK8Ya7qze wWfLX1z7uymKAkEQYJqO4bt9SFGqQwdhCMYZlnr9+c/TGMD7B33ay3WgnTsMSx/YMAy4rotW q4U8zzGdTiuUYd0QOOdwXRdxHKvr6Pe86uQgkBFIKXFxcYGjoyNsb2/D8zy1I+up1d/v/waD 5QG22tvKfatniOr3EELgYPoU7cTH2H2NFf8Otv1PZjym61GPjehUlEApy0L3bAzg/UOdIvB9 743jGEEQqKO91+upBUC74fddk2KJRYvwqtOIToMsy5Tx6JViihdM08Tvjv4LQgj8cutvEcfx lc9Br5OrIngpE7PVuY+WYS/8zE9BEwS/h3iTnV9XYXMcB0mSKO3/6XSKbrerFqgQAmEYXnkt Yo3WX6dnuSqnL6VUtGm6jy6RAkAFyLurf4KXx0cqS0XFtoVCvVICjKHvl005S5i7LG8bTRr0 FoIxVsn/Z1mGJEmQ5znyvBwHpC9ox3EqqVEpZcXdSZIEjnO5bbGeBVrkCgkhVFaqvvj1U6hj drHkLOPVq1cqk6UvfgGB/cl3eDp+DMkker7/vXHQ20BjALcUtm0jjmOEYajcF5r/tahA5nke er2eMgR9pOmiCrG+my9icH4faHenQFgIAd/3MZlMVJpUN6ZJNgJLDPjpEgb9pWv1hd4mGgO4 pSDXhzTz6TX6Q7wh3X3RK7fZTP9HyrLPtt7cohPj6Br6/GP9Oa6jQNDXxFhdXV3F8fGxig/o +761BOZIxN70nez8hMYAbjEYY/A8Ty3K+k4dRVElPw6UJwepwC0qhunuC12TEASBup5yXWoS 6Pr36PNpmqqglowoSRJ1+jBWKmPv9HbxZxt/eanJ5ibRGMAtB+ccvu+j0+lUTgBgLmBbGaY3 o0nT+wlCiEuxg24MugAuAJXxWUTFqD+HaZpqNhljDP1+v+xTwDx41tsU3yWaLNAHAMZmzR0z l2I6nSqqcpZlCIJAZYUItm2Dc44oipAkCdrttqoH6Br/OuNU38nJADjniuGpzxjQDSNNU0WC E0LAdV1MJpPy9GACL5I9xCLGursFK7Xg2M47M4TGAD4gkO/c7XbVwgbKVCRNWCSQ0WRZVokV AKiFrZ8kRGqj4LooCti2rU4MajGsg2oE9GzUxun7Pg4PD3HGTrFqrGEohjgPz5Ajx4PWp+oZ bxqNC/QBgnMOz/NU9xZQpjrruX7Sx6EJkZQeJZoFMJ8gSTs6ZZp05bV60KoT3vQpMXTPoijg eR42NzfRaXsQEBAoEOYhzk5fv3Gm6W2gOQE+YNi2rQpVevCqs0YpTUlfU/qSMYYwDCGEUC2X 9Pk6FjXD6EZQH4qnt1vu9HbxOj/GhtxCjw3gtTqXrn+TaAzgIwD58WmaqjoAUC5G3/eRJImq JNNCJpHauhuiL276mnx8/fv6PVqtFqbTaUlTNuYzBsj9utPZVMO86TNNDNBgIX4IT0jf2YF5 768+FJvqCbZtIwxDlZ7UU6uUpaHTQX8W6j2gdGgURSqI1nWJSPGZFjdVramWAUAFyu8yE9TE AB8w9IULoEJUq4MMgRafHvDqRa063QGYE9eSpJwoTwFzmqaKjk2xA6VUKYiupz7fdRq0MYBb hh+yQ7ZaLeV20IKlhb3Il+eco9PpqN1fJ63RfRf1+eoBsu73U5MO8ZTos/XmGynllb0IN43G AD5gEPPS9320220AJSUhDMNLIlv0ftM00e12lU9vmmbl5ND5QcC8J8E0TViWBdd1K/EBzR+r F+PoGnSdesX6XaExgA8ctGu7rotut6ukTBbRJPT3+74PyyqFZC3LqmSR9NMjyzIVvF5FmyZX p+5GEYHvXfv9OhoD+IhgWZZycaSUlUaZOnTeDmFREKyzPvUeY6ox1Dvb6DU6OYiUR3+/azQG 8JGB3BTKxFwnbKvLLlI8QKBgNssyPHnyBFmW4ZtvviknNM4ySY7jqI41zjmCIKgwUuuU658D TRr0IwS5Hq7rfi/12DAMeJ6HIAjAeSk8S22OtMuPRiMl0bi3t4cwDLG+vo7Dw0Nsb28jDEOM RiNsbGzg8ePHsG0bu7u7lfv8HLs/0JwAHyWoAPYmjfdUyCJZRsdxVPxAnWhra2s4Pj6GbdsY j8cqICYXiwpwlCIlbpJ+b52AdxNYRNsGmqb4Bm8IUn8gCjSpTpimCc/zEIYhXNdFURSqJ5nI dqZpIgxD2LaNIAjgeZ6KH3Rhr8FgcGNGUCf4ERoXqMEbgbJDJJBlmiba7bZa5ESYMwwDy8vL mE6nAOZFMlr0vu9X6goAFJWb+otvAlddt3GBGlwLvVWy3W5fanSh+gBldsgtcl1XNcEQE1W/ Fp0klF7N81yJZt00KEtVFEVzAjS4HsQW1WnQpOtjmibiOFY+PnF/KLYwDENxgMgVCoKgshvr VWkS51rUV/BToEu/UOxC920MoMG1WDTelDhGlO50XRdRFKkgF5hLrQDzQFr/N027IaqE4zjX pmR/LIqiQBiGlRkI+jyDxgVq8L3Q6Qokt0hEN9u24TgOXNdV/J5FzfZxHCNJEniep7JJOkWC utLq3Wk/FUEQLFz89GzNCdDgjZHnufL1TdOstETqLY/66CSiU+stmLoLRBpGnHPVc0yxxttA URTl0DytLZOq11mWNSdAgzcHCVyRT613j5Gvrw+/I5U6ygJNp1Pl+gBzFig1w5C7MplM3top QKxUvS2TtJQYawZlN/gBcBynQo8mSClVMw1VmSmQpewPjVRyHEdlfHQiHe38lDmK47jS0/xj QAYrhFBUDnKBKCZpToCPCHUm5w8FcYN0UawkSRRHiKbF6KDRSdQkQ9kjxhg6nY7iB8VxrKjT RJT7qaeArkVEsQmpVAAzV+gn3aHBRwdilBKtmlwfYD5vbNHC1SdQkgtFQbROiCOXiYzrxxoB 1R/qz66nWHPR1AE+GtCiexuVVtrR0zRVWRtqjKddnhsGspnLIYRAEASKWUqGQsFxt9tVmRq9 RyEMQ9WP8KZBMT3LdDpVO78QAkJKmLNJ97oMTGMAHxHeJs+GAl+9IZ6QZhnsWXBM87qooEYL nFozSZhXT02GYagIdZPJRClet9vtivoE/SH1Owqm9WtJKZGLMhYwZ4IAnHMMh0P0+/3GAG4z fohCxE11XXHO0e121exgADA4R5LEsExL8f/JzSGXqd5wTwErZZW63S7G47EyMFKR8H0fWZap wFoHUS4oyOWcoxACJiQMzmHwcqDe69dz8a2GDdrgrUD368mPrytJ1zNHREswDEMtfn3Itt5V Ru4SUa4pm0Q1Cb0457pupdlGyNIAGGM4Pj6GZVm4d+9eGYw3BtDgJiBlKdJLdIn66UMLmopg amxpzUjo8wAUx4gCZPqMPquYlOxOTk6UBpKuPj0ej7G1taU+17hADW4ElOakHgDdLydqNe3e JJOy6Bq0OZPLo1dzKTbQG24A4OjoCGEY4sGDB5XThTGmaNpEx2gMoMGNgegPRJum4tci1NWr 6yB5FgpsXddVJDxdY8gwDPR6PVWwq1etdUMEmkJYg3cAYol2Oh3Viqm3QBLd+k2uo7NTryLO tdttbGxs4PD5oUr9LlKw5pw3BtDg3YGqwGQI/X5f9QwAl6dL6pVr0iCl7+tK1u12WwXQZEim ZWFjfQNPnz5V96eAW0qp7tm4QA1+FlBg3O/31Rxjqgfocou0sEnBgvSMdEIdqVTkeY6Dg4OK 8hwp1ek1CZ2r1GSBGrxXoLlm1CxP2qb1LBL1JlBVudVqqab9wWBQOU10Y4miCL1eD+fn53Bd tzkBGrxfoOk2nudd+z4a9jedTtUCPz8/x87Ojmp9JOg1BMdx8Pz5c1VpbmKABrcWlGoldict eiqCkfIdpUyFEHjy5Ak6nQ5WVlYANFmgBrcc5P5QE3591gDFEcaMCGfbNnq9nuIlNS5Qg1sP 6jmgCq9Or6YUbJqmePTokQqKiT7RBMENbj30gDfLMjXcjzJIaZri8PAQW1tbYIzh5OQEq6ur GI/HjQE0+DCgF8T0zE9RFDg4OMDq6qrqREvTFCcnJ+VIqMYAGnyo0ItpFBATFYO4QU0M0OCD hs4kBaBo1JQpagygwQcLWvz1Iho13jctkQ0+Wqiplz/3gzRo8HOiMYAGHzVMffBZgwYfG/4f zftThaVnYcAAAAAASUVORK5CYII= </thumbnail> <thumbnail height='192' name='QN 5' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nOy92Y8lV5rY9zsn9rvnVlk7q8hmk80m2ezF093Ts8jTo5Fm0Ta2AFuAZcCA 4O1RgF/9L/jBsGHYD4IAW8bAs2EkQ5JH09KM1D1bs4fk9MJusopVWUtW5X73WI8f4p64J+LG vZnFZvVwyQ8sZmbEibNEfPv3ne+Ik5MT5bouGrIsI45jhuMRCgWAbdk4tk0jaCCE4CcBSikU isOjI4QQeJ4PwMMH97l06RIIQRiFOJaNZVk8uP+ARqPBxsYGo9GIOI7p9XpYloWUkvF4XOrf siyUUqRpihACpfK16t9XrdNs+0GBEIIkSbAsq7jmOA5JkpTGPEs/ev5neUa38TyPNE1RSpFl 2UIbIcSZ+zTfS5ZlxfOtVovxeIxSCsdxip+TyQSlFFLK4rtHcVzgnwbXdrBk/t1838dxnLO8 kpVgu66L7/vFQkfjMWEUIoQgUwoBbKyv49hnG+w05HkSyLIM13OZhiFJmuC5HltbF3j4cJcr V68Q+EGBOHEcs729DUCz1WJn5y5bW1tYlsVwNEQIgZSymKP+yCbCVedtrsX88FUCqCLGKoTR 16p96981YQohijmacz8N3nrrLaSUXL16lW63W0vQaZoipUQIQZqmOI5Du93mT/7kT/jc5z4H gJSSNE1J05QkSYp1SCnJsqz2G9ddM5+L47h4L2maAhCG4cL6pJSkUbjQrxSyaGfbdoG3Pw7Y 5h9JkhBOpzOO76AENBtNbMte9vwCfJBcUUrJ5voGg+GQ4XhEGIU0m00Q8OD+A65cvYIQgigM 2draAmYvfDaHk/4J7XaHTCmiOCJw/VLfVa6vn1+GuPq++Wwx5hO8gypxVPurSqSzwuPHj1lb W+Pq1atYlsW9e/c4Ojqi1+vhOA77+/uMRiO++MUvcufOHQaDARcvXsR1Xf7iL/6Cw8NDXn31 Vd5++20GgwEvvvgi6+vrJElSEIRSijAMkVLi+z5hGBZSynx/VZBSlqSZ2Uav12RQAlGSAJ7j FszqrNLwLFDCbGlJhCXxPQ/f88/MdZ4mSCHptju0mk2OTo6ZhlOCoIFt24TTkL29PSzL4uKl S4RxRJok+H7A1WvXuX//HmmW0Wq1iJO4hMTmS8yyrEDCVVysThro62afhSivcPpqf9U+flwI w5BGo1Godr7v0+l0ePjwIVtbW1y5coX9/X2m0ylBEJBlGY8fPyZNU7785S/zne98B6UUzWaT OI7Z2dkpVBVzflJKgiAAWFCXlq2zTmqa97TEE0IgEDQ8nyRNQeQ4YBuSWs/hg4CilyRJQMFa t0fgBx8K5DfBkhYbvXU67Q5KKVzP4+7du1y6dInLV3JJEEYhYRwxmuT2y+XLV9jf20dKSafV Kb18859ea5UrVdsv4zwm4psfsjoWlBFGq2LLCKL6bHXM6nMXLlzg9u3bhQ10584dNjY2aud+ //59tra2iuu7u7sMBgMGgwGPHz+m3W4vSMgsy8iyDM/zGI1GDIfDhflX123bdvFe6hiQOUb1 nbuOg2s72DO1UBO2tlM/CEkgJpOJ8jxvYQEfVlBKMZlOCaOouBZGIXESlxDRtR0cx2XQ73Ny csIz168jpSSKotoPpvuuXjOvr7pvEokmAlOqnIUbRlGE6ZBYBVUi0zCZTNjf3+fixYsMBgOS JKHVatFoNLAsi9FoRK/XY3d3FykllmXhOA67u7u0Wi02NjZ48OABnufRaDTwff+JDHA9F9d1 kVIynU4LQqi+++r7q77LapsqBEFQ2CSpymj4QcmmO9OcJ5OJSrOMaRSy3u196AkA8o8/HI0I 44gojmrFsG1ZWDNbJk1Tdh884MaNGyiliAzieVICiNNcj81Uhms7SFGWlEmWkqQJtrQK26lq +FYNU91/HMc4jnOmb1CncumxbNsu6eWWZdHpdAA4OTnB8zw8zyOOY0ajEWmarkScKhGb6zH1 dk0sSimSJClJDC01ltk6dbDs29SppONoynq3R7PRPPXdmSDTNGUwGiBgqTj+sIGUklaziW1Z tS47pRRJmjINp4RRiGVZ9NbWePToUSGOq7BMX4dF3T9OE9IsYxKFTKIpaZYWbbMsI80ywiRm Yngy9LxN5KlTY87KgLTqZtob+tk4jkvvRXvJNEJOp1OGw2GB/GcZS8Mq/JhOp9i2TavVotVq Fe3DMGQ4HJb6W2YLrJpDnVqpmZJSuev0SUFOJhNQQKboD/ol1eLDDFJKep0uW+sbCGYuRCnx XBfP9Qpki5OYLEtpNJuMJ7kP2uR2dRzJ/KeRRo9pWxYNz8eWFpaUuLZLmMSESf7enBnXV0qR qYysovpUdd46l2jdv7p7JlS5aZVoR6NR4XLUHHoVVNW+OqgSq5QSz/MQQhT9m9Kp2tcqpmPe r5uX/l0IQTLzTo2nkydm4HaSJvieTxAE2Lb9kVCBNAgh8FyPtV6Pw+Mj0hn3tS0L3/WYhlN8 xyOKI3wvoNtb4+joiPX19VppN51JC0FudEspiZKYNEuxLRspNKHl/c9VGpdJFGLLrOS6yz9g BtRLHb0GE6o68LIPWjXYT7unlGI6na54m4v9azvDRFLzZxWBbTsn/jiOC2Kz7TxQWaf/ayYR xhFi5umRQiCERDAnniRNSbIcyaUQuLZTYRg5g0qShCiO8c5oRwHYmVJESUw2Uax9RGwAE4QQ VAKGM44Q0gpyfVBIQZImtNtt7u3s0Ov1sG275EkYhxMAfMtDAZNoWiCAlgA6jlBFUktauLZD kibFhyq4U5Zh16jXOhhVBf3RTSO3aju8H6izb6qSpXq/Tk2pSiqTw+sgntb/tUTQz4VhWFpP kqWEsSaMrFAl9Tobrk+apYTJXLWx5TxQWHiFjHcSRuETEYDMVIYlZDHpjyI0ggDP9UrXNMKk aYrruMVHWltf5/DwcMEWMPFKCoE34zJi1lemFGEcEScJcZqQqayEOI5lF3Rozbwrru0gqRf9 pmtwlSGudf3qup4Ultk2q/qq3rcsi1UewzRN6ff7BfK3Wq1cos6+gyl1sywjmsVmpJS4joPv erknR0epK/gohcB3vRIjqDKR8aSc8nIa2JbIJ+jIs0d7P2wghKDX6bB3sF+8NDPHJ01TbMsi TmKazSb37+2wvr5euOYAHNsujCkhBLZlY6UJlrRIs5Q0y0iyFEuCZzmoTBGlsw8oJI5tE7he Me5ZELVO/63zcnwQsMz9qJneKl1cCIHrujQaDSA3dqtqkeldS9MUz/OK9xtFEUmSlPo3bSZ7 pm52u13iOGY8zm03KeWMGCRSCqAsBZXKFU7zWhhFMylQZojLQEopsCyLIAgQH7Lg15OA67h0 2p25qgDFeoQQNIIGUZy/9I3NLXZ3dxFCFBzKklbRtuhTqzXpXK3RYtqyLBw7D9QkWVLc1/3p fs4iVauGrp7HsmfrjMPq/bOOV6fmVMFxHJrNZoHkVRulatgLIQpiAUqq5tyIh8D1ihQHbT9o N/DG+gaNIJhLYURhg+mxpMxthaphPA3L3rdVYCdpSrPZLCbwUQa3krCn/dtBEBDPErqSJCEI AvYePwYouJQlJU0vKIt8aRG4PnGaECVxwamYqUTWjMCqxLNKRGsw9djqM1XD03ymqncvgydB 8NOklVZtqp6jVc+EYVikS9TZLkGFQzuOUxjLnufR7/eL56q4aRroQgh8x0ORM6fEiGkkSUIY hkRRVOQuua5bmrfd7XSfOHr2YQUFBH7AZJobtGmWEvg+e4f7ZErlIXUUoPCDgIcPH3Lp0qUi mgj13FOLaSEEURIzCae5F4j8Y5iuTzib6lLnBl1mD1SfW4b8p103CWsZgVXbASXErzOC68YL w7CIaptZrdV+pJQ0Gg0cx8lTOJKYRtAojV/n3jXvWUU8xEa4gixJOTk5KWIcWtUbDoc4jlNK pbbtmcj+OIDveUghmIbTmYtNcXhyXOjlSZpzCNuyWV9f587t21y6dKmInC7Th6tSwZrpplXx X/eh6qD6Yc+Sd7UMaU9rr6GamlGH/EKIIvktrgkqLfMGVfsKgqBAPv1eNZOt9tFozBIbw5Dj QR8EhHEEGbiGo6JK3NX3YRL2KkkVx3Hp/kdX6V8CruvSbedh/2RmSFW5VhRHWJZFu9Ph/v37 JEmCbds4jlPrnTG9F7ZlldLDqx/GsqxT89RN47OuD1iMfJ7VQ1fncTJtnWUcG/J12radp5yv 6Ps09cu27cIGmEwmS9sJkQfMTk5Ocu5sWTOPZLqQ/XkWx8JZXMT6+ek0d3N/7AgAoNVoFkE9 39A1vZn+F8URSmVsXbjA2sYG9+7d4/HjxyiV71Cq7jSqM2rruLd295mIdhpyV6EOyZapA3X9 1o1bR3DLjFcdwNJEUPX2LJuz2Zdt26RpymAwKI2r9XYpZWFU691g2vPmOS7BzNVZN04QBDQa jdqUlmUS0iTwLMuKpEMhxMeTAIQQdFptYL54x3aIZ6JPAJPphCSJcRybK9eu0Wq3ee+993KD eOaVqOrmpt6uxzF/6t+jKCr02qpOX9X5q8+b/Zjzr/59GiFUiaxKGHVEqCXNeDxemHv1d/P5 qldqMpkwHA5r84yCIKDT6TCdTgvXqPk+6tLFNcHoXWVarapTi5aBHkNLe932o+/6WQINP8B1 XCbTCYHnExnp0kLkXpxJOEXGksDzaQQBN2/e5PZ779HptLmwdaG0FdBEVhMJl710KWUJifRL 1whmejGq/Szj/sXca6LEVVjWxyp1KgjydGLttjT389ZtGqqzf0z7oa6d3putJaXZTr83c+56 843JvU3pW7W79DzrQO9sM4n3YykBYOadsW0cyy4ov3hZMzGsP1wYRcRxjGVZbF/cZjKerETu KjJVOVGapoXHQSPSeDxmNBoxmUwKNUCPv8x4NnV3/XeV89Zx4erc63ao1UmAMAwLNSOO4yL4 pT01pgu2KsVMZNTeH6XyuIhWN8x16GvV9Wsw1ZbhcFgQTp30NBlJHfKbTKPq8fzYEoAG3/dZ 6/aK8Dosqg9plueTZFlGNA0L/fQsRtUy0Ejvuu7SzEv9MasfbZWaY96rIn0d1EmWZYSt56z9 557nFYxDb7dstVqFX97MkjW9MKbha+4I0231P1PNrJu3SXB1azmLCqSUKjb363mbz31sVSAN BZemvHAtKrM0A5Hn72RK4fk+w8FgpT6p+4XVLswoyjfr+L7PeDyu1aPNuVT7hkU1QyOM7/vY tl24GNM0LRCvzjjUczX7qCMmKSVhGBY7xbS6BhTZpFU7otPpFNswNZfVKk4cx6WNPpqjV4mn DtnNdyxEXlZFG9ZVCVaVoiZhJUmC67q1hPSxlwCg8/htBGXR79pOkb6sK0don7R+rk5V0LAq eAZzN5/meHVQFeln9fKY+TVafauqZKbor6oMy/pWKk93CMOw2ERjEqo5P9d1i51lkEdz9TZK c21A4WauW7Mev0qYZlvP8xaIpjr/6nvVkksjf9WO+9i6QasghGBzbZ1GEJReXJImBJ4/K7gk 8V2P8WhUbAhfpm7URTZXqSQ6f6b6jNmu+tHNuS/T88MwZDweE0VRsd2w2n8Vec0+qpyyOu5o NCoReXWuQRCUDOc8kS3X1XXKuW6vbYnqHKpz1W273W5p/XEcMxwOlxrAdb/rtAqzfZXoPhEE AHmASle2K4w1xy0+kuu6ZFm2csMMLObwmGAim24LFHq05jqrPDimgVx3r8rFdD+nlScxjcUq EjQajVLymvmcztGpI1xdNCvLssLw1dxfu0G1ejccDgnDsJTiXH2HJnJr+0lXx9MFvHSUWatM pmStqj1a7apjPvr6x94G0KCUwvc8GkFAHOcvFAG9TjevGYTg/v37XLt2DaVUgbSn2QJm/xrq DDhYXQDrrH2bBLiMIOqer94315UkSSGl6ri8bdv0+/1Sbo0QguFwWCJmXa1NG9JCCIIgyIkh y0jShDCO8oodlr2AkOYONN/3i1Rq7VJ2XbcoyiWlpNPpFJUnTBtLbzaqi30sSIHJZKI+iBJz HxXIsqwo+Zgbv1axUdzzPE5OTpa651ZxftO4hEXfu3m/jpsKIYoIpWkU6jkvU21W2R9m/+Y4 5j3HcciybGnCm45faANX96ETCE3k0hmXWg3SaRX7+/tIy2ISTZFColSG53i1njnPy/dzm56k ahvTCaADaqZ6qj0+1fdXJTIp5SdHAmiQUi7ofaaRVdV161SGKtRx6DqjbpUBqsH0CJnIZv69 DE6bW53xaAaW6ozxanFeIUShFmmua6p+ZhHiJElKtkngeniuV+sWNsfVc9JIrNtXiVrbBBqZ NSGbTKTu+5nz/cTYAJC/tMlkUng3tB5rIpnv+0u3K+o+zJ8mVHXSOq5tGoEFkqUpo3BSSzB6 LJNznWYk10mvZdf0e6gLzJnzN4lQZ88u87xU5yZEvpmlETRot9sEQUCv1ysV3TIlgP4eujiX WRNU/9MuWZPZRFFUeJrq3lX1/XwiJYC5nU+LbG3kxXFcGFhwevKXqeIsQ6SqGmT2OU/TXlQ/ qlCVKNW+zTlUx6ojkjopdZp00u2qWyKr9zVo16dp3I5Go5IK4jhO4cYFijwsHdeoyya1bbuw LTTn1x6fOgLURKs3SJlpGJ84AjA/tum9AAp3ngn6xdVxN71XuGrQ1UEd99VcVZf50PsYVhHB WYJAVTVmmRFYNyezH32tithVAjTBVLO0a1SDVpm0nm9ZViFJtNtTP2eOXXU7C5FnnPZ6PZIk 4ejoqHiXdeqqfie+n5f/iaKo8FJ9oghAv3ytp1YzHq1ZpTnNJYAFiWB+lOmsLGNez6Y+OFNF 1FV2hcrK4rnatg55qxLB/OjmuMuQv9puWVkW834dKKXwPA/f9xkMBgvEpMc2pcJoNCq+gzkX 13WZTCalwFfVRtBIr4mlblejySy0R8msmveJVIF83y9yXaovTSdu6Zda9XToj5ikCWEyf5FZ pkhVQpqlpf0Hy0D3ozfY6/qivu/nXDNLsCybLEtxrNzglBXENm0CPdc6u6SaXnyaEV01iE3i kVIurWckhCj2ANQxAn1N+/Y1M9L+fXNevu8znU5r9zaYfU2n09KGenOdOs+ouh4tcT6xKhDM N8KnaVrkqcA8KKQ3adR5K5RSedU4kZDNnplEueoSeH6pnfmzDvHCOCZNExp+gBQ5l3Ndl2gc M40mOK5DlMbILMWznaWJYXqcOiO6asjWEUm1v6q6Y/5eVTXMMeu8NaX3ZlmFH1/vzYVFKSuE QFiS4WhY6qPbapMmaYHIlmUVTMvMYTJV1mVGsJ7jJ8oLBHM1SCeSmZWi9X29T9XcGVZ4M2bi 2Hc8bDmXIIE7/3vhY1bUHf2377hYlk0YRaUIqed5uL6XJ+qRV6KOVhjKxcesSQ8w51Atqb7K 1jC5f/WZOuKrzqVOCliWRbfbLd5rkiSMx+OFzTNCCHxvUZKGYVQQmu5PqzdC5El52ou06hvo ol3NZvOTRwAwr0SgEbqOK5r56nWIIkR+gMP877NVb6siizurnZkpgwAcF9/xEFIURKCjqFWu BoupF1X7QF8z/z6t5lBV0mi7wLxXZ1MskzCQI7yuVK3VFLNqtfnO8lqsy3P7q8clTadT+v3+ Qgl2bZt0u92Sm1pHvz+RKhDMMxd1BLgOYXX4va5CAswK6ApJqlJgkeNBPUKYnDX/0FlRYkVD S++ZnebVu4XIa2mSULIzqki4ivjq5ncWMFWfZQRUZxfooJ5pO+h6P77vFzGXLMuYTCblrYq2 Ta/dKRX0rTPszbVXmZWeo85sNYlXH9zxiZQAGlzXLTwOdSJbh/J1heM6T4Nv7HZaJilOAyll UWRLqTw4F0URzUYD27JJZ8dXQb23owp1HLru3ipuXW1f/VtLz7o2GkzVqU4Xh7n+b+5n0M9o d6n+t0p9M7+B6UkzOX6dTfCJJgDNibRrbVmbZrNZqw4ppZBCYol8M80ybl9HXOa9uvs6WLPW 69EMGqAUaZKWnquqDSaCVMevckvTm1Q352XrqENq/Xs1g7Z63yQ+HXPxfb/oczqdFnsx6t7T sjXWvUutKq167hMvAWCO4Mv825rTafFsfkSNPPrw5lXPr/IGAQsVFLIsIwzD+akrjSau7RBG 4UIZcZP7LSMIE4FNzl23X3jVLjfToD4NKaupyvqnft58p/q66Z3Tu9L0lsZqQHLVeNU07jpj /hMvATQIIU49ddx13ZL6YSK2Y9sLdUmrqkZVPFdB68J1HFaH/n3PQ6UZ0zA/milMourRCMWz 5hxMN6N5vQ4hzDmb/VXvmflSy9ZkXjPdp1rl0Z6cZrNZuEWllAwGg0Id0mqQkJJJnK+77h1X 37U2fuuMc3O+n1gj+ElAI3s1+GTe1z91myRNsW1roX0dhz5NOugNIQCtZovRZExapHXHeE75 QAgTSWG53VBFCnOupmRY9uxpOnmd/WByeq2jmxtftNGr8/w1J9cxhizLkKJ+PeYczGfq1qvb n0uAM8JpqhKUkSLJEqZhWDpAb5XRWcfNNOgc9wKpBKUYQVWPr6pd1XGW7Xarm6Pplamzg54E qoSiC+LqHCGN/NoJoINd+jjUmaus1KdmODqnq1BtKoZz3Zo+cenQPw6cphuboJEoPy6p/p7+ fRn3rxqZJvJ5jofrOiRRXATQqkZmHSGZfWmoSzSrGsvaI2Nual81ZnUN+no1vyiO46L0SnWN Zl963IYfIBEltU9/kyAISunVOmNV71nudDoL8xfiE7Ql8v2C+YHjOC5SJapBIQ36A7u2S5ZN yVSGvUJkL6utU1UxTLBnB/mlTkaWpAhvMf3ZVNfqiMtcW/W6vlfd21A1oOueMZ+r0831M0op xuP5qZ1m1TZzPCHm+TtqlniopZ8GfX5BtX+9P0DnFulYgNnunADOAEqp4tR1y7KKKmlpmi4c /KZBAI3KgRtmf6aoVkoVfZsFZDXi6CQ5k+gsy8LOLIRlFxvA62wNkxjqbI5l6ow2IrUqEYZh qZbnsn6WeaGWeai0SjadTmm1Wgghigp15jsq1lKzRn04X1XlCYKglFVanZNS6pwATgP94YIg KMqE6M3g+oWbG1HM52CRK1b7NhHaHE+DvqeRwhzHdRwEgtFkXOxtMNWW6lzMPvXPZQRgbkWs ZpTqn3WG8qo+dWTYvK/fiybwIAgKpqLH1ZtohCirP9WxGo1GEVVutVqljTvLVM1zG+CMoFMn TAQwTz7UH0hzoyr3y7Js4dRDfX/VFsyqGqKAKImJ06Q4/TKYBZNOK9Rl9lMd1wRTZ68LlJnP mDbEMkmgoa68yrJxIScKLXm1GzpTGZ7nFTq/zijVRrTjOHS73QVHQN07OVeBngA0cjebzeJw BfOe/qmzTKsu0zTLD3sOXL+EBKZ6Usc9tUekIKLZeWWe4xZ6s1IKrPlHrvMAmePUqTHVta56 D+bPZY4B87RMLSWq0qM6lt7kbvap1ziZTohmUiIKQ/TJRqZHSx+2oY127ToWIs8UHQ7n6dVa Yp5LgCcAXfdGn38L+cecRiFJmvvqtU+7FChCESa5x6ZOXajjmiYym2U/HNvBd9xSKra5i81E OBNOU4vMMZddr3tmmR1RVQHr7lXBjHdU3cACUTqZx6w1WjdvUzK32+0isKZtDr0f/FwCvA/Q kdnxeFx8MF3waTKZFD5ps7amY9m1H6p6rcrFTQNYI45tHMqnRb2p/lS5PNQTl9l+GVRdmGdp W4VqtYxlbc111M3PtixadhMpRJGpa5ad1O2VUqWcInOXWpUJnBPA+wRtcI7GYxACMUuI0yeQ 2LaN53ml8wCSLEVIUcodMjl2nacG5hvz9XVTXTIRxEw/1nAWItDqXR2cZkSuGse8ZllWLSFU wayqUR1P/37r1m1eeOHTRZDM5O7V8bWttmBLqbxEzjkB/BigDTN7XK4moXPNdV0brZq4wq1F qNO4cBVBq4is+9DFvarGZh3R6H5OS5cw+6iO/aRg5vufBlVPlX4ujmP+8I//HMd1+PTzzxdr rfNsLTPwzb7OCeDHAG30NpvNYieS6avXGY23bt3i8OiIO7tH6PxDRR4rWOx09lM3KPv9iMIJ 0vFRCJJwjLK9opkg36A/53aqnDpQHVTr50LMSkWK0hSWQd3UUBlZEqOkW7k5U6GUKp30vrjg eVs9N8/KsB2v3CZL+PzLL4KiqASnK8hp54NZo8l1XabTaSGxzY0x5yrQBwQ61K4jklrUKzU/ mb4dx+yf3GfsX4KarX5ngSxNOLj/GGdjE6UU/d2HqO61lc+chePWqQ5nfbaYWxIS9oekjQsL /a6a29KxVMZGts/GlefK0ixLefdHY+zpDr8cx1y9cjnfODQ710EHBE0PkP6nt2Ca0vCcAD5A 0IRwcHBQKje+f3DAH/zxm9zY7vKj4QjhtZb2YQoAADnzIik182DM/mnuna1AsrOib1U1Kji8 Kgfequ317xRtF8u1lOZTo/pV+5jfo3SqTzGmkEgnIHOu8rt/dh/xzR/y0pUOh/0hg6ni2Usd fvFnv1yURTGj5LoihVJ5cNHzvHMC+KBBCME3/uhbNHyXF55/jmazSeD7/Gd/+xf57d/9PVTz WYRSs5NpymH56u+zCwVyKXKs0BpGThgrMkwBcYp9UbSteqNYJIxl7dUMW1fFFkrtKbeva6sM lUkTurkWKSV20EE0urw9yEA0EQ3BW48nPPrNf86lCxv87Fe+VESWdSkW05vmuu45AXzQkGUZ E+XyzqHH9/7wL2naGe12k/VOk+FwxGR0i+a1VzH5sxSCbMblocbINbV8MbtfwmmNSHkR2qyE bMAZiaAKZ30mj3WAlAIl5zYOanHbZj7LJZ4kVHFPCFEu2W7MZ1kKilIKy/V5HG2zty/50e/+ IZ+/0eONd3ZpBB4X1lqsd5pcv3KRTqfD7du3zwnggwbLsriw3uLBQ0XW3GYADCK4v6dI7BZt 16GaXJDqHJna/V05lKLHKkMpsKVFpFRBDIJZ/GBFvv+TQFU/18l6tX0LSgYoUCpXKzAAACAA SURBVDpNcpl9saBKCVXQ8yiGjSRC2u6CZ8eMe1Q9P5abp0dMrS2+dT+DxjXGwP6xQt1/zGcO DvjSa6/wo3dvnRPABw1CCH7+K1/kzf/rX5E2Ns070LpAksWsd1pc3Whwa2ePxHZ5fqvBDx6N ePlymzfvHPKZT13m/u0H9CsHravZ/zT+BetXiA8eoNoX9eAz4lgdeV3ldlVKFSVahJS5DaIU QorCn75UdYFC+uQeqfLh2sJy+NLzm0xHE6QX0FQhNFo8eLDH7f1xoUrpuUVOh2n/gMb6pZI6 lqbpou2jtLcpQ8sYbTMA2MmIFy/6/PQvfY31tTWEEFy/fv2cAJ4GNIKA9bbHXmoEcQDLa5EN HzGcRvhuB0sKRtOQWLVIo4hpCr21Lj3fou9Z9MeLu8lKnkzLQaYh6bwRdbhZRfgicFbjmhRC FMgkhZhv1s8ocd7FQaA6uJl2oJRCpTEn0xSmEePMpj8as+0HXOgE3NobLXSZWT5xfFyaswZp RLsLYhACofR05u9iw5ny93/pi1zc3log3nMCeAoghOClG9v84TvjuW9diFyUdy7Ra/lM44S1 bhMnTFlv+2yvNVlvB5wMD3lwPCVRi33OfjMv0ty8xuT4IXHzIsrw45fCB+WnCt//F164gpdF 7E3ges9hf6ro2Io/fvsRGfVHMy1fNKWYQ10ukPQavHyxwes/GrDuwlsPInqbCfbMJVBHjKtG F1KSJknJPtBOA/3kljvhH/zyV+gZp06a7+GcAJ4SXNzoEn7rL/G3PzV351kO0nbZO+yzd9in FbiMJhF/MshD+Y+P87Lt6mhcGyFWxc/5B5Zug6C3TXayT9q8UNyFMiGYAS9toKZpxsZ6izsH BzgbHkoldNeaNIRiqN6H0Vz5WYUsHPOb37qd/7Gfr/XbP9ot0U51zUlNinchwVJdka9eil0K pvyDX/lZptMJBwcHbGxsFG36/T7ffvN75wTwtODK1au0A2dmpNbn4AwneTEu8/MVB/hR54VR 5A4gUXxkhUK6DXxvyHjwENXYAMstIaNJBKZkOB5HpNMJnY7H0XDK4SDBSSOGGcuxeBk8oc2t Ku9lWWg8DmdlUAzVzIS6+qEqS8kOb/PsF57n//zn/5YHxzE/99I2f+1ra7zz7i3efPs24xha vc1zAnha4Hke0egY0Xkmv2AEtEyoimRtdNbBzLSrVUuczgXa7oDhwX2ytZuGY3TWN3MvUZpl CODOg4Oy+gA8MIzYJ4W5nVI2Zquga4Wad6teIW2fpOSnSgohkZbNZ29s8Pbtx0RIXrqxwd7B gAsbXSajEZbv0z8ecGdnB7uxyTd3IFNtZJDxh2/d4/Xv3WJjc5PuxgV0KPKcAJ4SSCHY2L7E zu6PcDsXsLwm0tLaLjBTY3TE1YS6wJj2zEhZRSqDgIRE+V3j3lwdmqHlmdITflyocuUFVa7K /StgznFMQDw6wW2tkWUp/TDFEmA3Wmz5kqzToB04WHaHNVdhJT53ALNatxIS0d5mDIwe3GFt 0Ke3tk7Q6pwTwNOErW6DgWoTTgZEh4e4a1fBWnzl5VyXjCyJiCcnqFQfUcosBiZQYX/5gPEU bPPMZ1FSgQoua1wzNQ8z8/L9xBFEFiMTo3IbhiFrEDGF+jZbk55NMRmRR8uFIFOQhmNorWHZ Dhe6AURtJlHCcZy/mzBOicYT9pM84S2dDnGD1sJaAUTvGY6zlP2HJ9jp7jkBPE2QtocT+DhB i2g8YDjYx+1dzF130QTL8fKqDtMBKstIxsdYs0S6VmutkBhKUwB5yvNhfxervb2gdishIEty rJghkkYurT7lf+QIuIwHr0yvqASyYO77t5MxInJKBm2uspX7EAYB1PVv9i3jEdK5AkCaxPzZ 9+7heQ4qSXh0PFqQWOO9OwRrl7C8eS6WqQYCSMvGaW2QqfVzAniaYFtzMWz7DTh8xPjRLSwJ jheQjBPSOMZvdRHConPxBkLOEbVQfWZ9KMD2GqTRDifRBOkGpfGycIRIMpzxY+LOdZQ1O/pJ x5hr8n30ONqvfhos2BYzQlIoMn+NLNiqbWv2bR5CuNB/iQAUnXQPr7NVahOG+d4L09VaSK00 KiN/ydCuqJqc2wBPFcbTEKWcmVohWb/6qZInpooYJlQ9NnMZoBhPJoj2hnE1B3f9GnY4Ausi 8cFD0BFiFrngwnj5oLXuV3NOVTD977r3wl5Z8syqJLsCqWc20jDzaRztEvS2TyVQIQRYzkwC Lka/S/OdwTkBPEWYxjMdHvPDFlcW2pe8KHX3gXgyIpIBlhC1baTXBKXwbIswS0A6JUO66CsJ Zwg/71sgUNrbaCC0MfH5L0LkaRn67yxGe6jqvDt161wFupfE6TDs3yfobS9va6pMUtYa2MWS Ks+dE8BThPE0ApdajrSM+5cNQ2FcyX8bnRwg/DVWOiqFwG32iIfHZI3NStvcRZnuv0vmtosx izkxJ1TThyRmmag1k80hjcFpcBpUk9nOArndvJr7F1Ilqyeu+t1o5xLgqUIYZ+DWfDzFjNOq RW65YByKAs+yaMowVMhOuRz6QueA9FoEScRofJgHx5IJIstgeoQFRG6buHmpMlKdcTsnwGpU WtsOmVKQhHjJYj6PCWu9Fp97dovRYMJa2+O7P3rACy9/ih++8X3ujU9d0vLbZpTYcYlHxzjN HgBXLvS43HX59o8ec+PaFhu+4CRSiCTm7t74vC7Q04I0TZlEaeHFmefEzFMSYPZtxZzjAkgx 58QwR7zh0SNka2spN9McXM5cjW57Ayfu4w13CJIBTSul0eoRrF8GIUpnk9WBNNSsBRzUQTtj 7EytVm+OhyFZmrHVC/jLnWNee+k6F3zBVuf0w8VXgZYqAF73IlmWMnp0C5WlhGnGcBSSAU0L 9iYp01FIq93gtU9dOJcATwtG4xFCWvO0BebI0e00uXGhw917j3HX1rjqweNpynrDZRimbDYs vvveHsN4VnYQQAiavS1Gu/ehex2ArfUe17rw+u1jLl9Y45UrLf7yXp+bF7tMpiHrTY8/tgXD 2CidYiSnLdTgYVHLOc1YLXtWllkvOWx1A6ZhxO37Q25eaPFH37mNarRwx+GSJ/Rgq29X5+W2 1rG8JpPD+6zfuEiSxtzc7vB4ELLVtHmcKaaTkLd2Ds4J4GnBcDBEumWdWHvkUwXT8Zh+mOKf DOlv9fCJUNLCySbsjn0udFyGB9PSt7e9RsF1BbB3OGC7nevx/dGEYRQAgv7xCYnj058muFKC mO+c0iqLlhSr9hTD6bhXGPVi3lp7lEoBKODxQZ/HB32UUtzdy8uZi3hQm8L944LleLjtTb7z p9+isf0svuswjVP2jvLqEY8P83bnKtBTgqPjY6Q7L49ufmPftUgRXNvu4VkCkpDdfsh4NObe cYhDwqN+uKh3ZxlxMj/v69JWG8d2eOnaGt2Gz9HJGMeRJMLm+GTMeDxlmGSlfjI1T4k4Dfk1 mNHhQnqUnq/aOIr6MFe5P/37afB+6cNyA6zmOvHwkDDOc4+qUu9cAjwl2Hl0hGUZB+cZyLZ/ 0GcfsKQgyxRHwwkCwa1JfhL8u/fD2b7Xcp/m30IIHu4d83Av7yfNFPcx/f2Khwcrgls1l5fZ FuaYxoIqnZQNZNOKWYXkesPMUq9QFpONjznc+cHKuS3vP6XdWVt6/5wAngJkWcbtB4cIfzEq akKa1e/IMrljuZpC2VOjM0ezTJWuKyh2RtXBquCbEIKgEfDqjXUODgesd5ocDUa0Oy0Yj3h9 56Tc10J/y71GOtBWN26RIbpwXyIa61gbN+r9+0v61GChmJ7cw19y/5wAngLs7u4yVh7W0ojn nHvWbUssyoBQRqK6z1z38YsQluE/L+r4Q0n1qYS7UMB0MmUQKtIwInHWCOhzOE5Q/bmvsi4P 342PUGIWEFu4e5oiI7CVIna6hT2hLA+kLJwAtU+dqkIJ5IqxzwngKUChZ1NVDOZhpfxS7hI1 UwMKLs/Z9ONlUN2SuOCdyVlynjZszBelWNta59NrDt+bBNhJTGzZbPrw7Z14aUqBAqzWVh5z WDL/OqIud6KwRvuzwJckCU/IoilWb6O+/RkhVhZhfzGnCM4J4KnAha0trHQKtOccfsaEFHmZ 7yRNZhg5i7fW7Al4UtD5M6uLZelUhvx/8zQNpf/jcO+Q39mbuUk4yvs18+spJ9AVRHHK/PWV pXVChUC25khqN0CFA+L+fazW5vtmCFbvCsPjBwz27oHjlz1r76vHc1gJ0pL4tkJnxlcRMlM5 QtXp9z8WKMhQhVpj/jQsiJzDVh7VqQ61apaRimFGq1VFlTJVrjow9yOcFYTXRoVtqm/o+RsX 2N15zCCFG5fXSSdTnGbAuit4MErJxkN2B/OK3Vb3ElEaQesSwnBOnBPAUwBLWrx4dYPvvv6t 0xsbeUKPQ5eR1SluVZUMpRST4QAR36p2YrRW2FlUpEprxFbG78wkjla1TjMkYdEgr22tyn2t yiot2TaLArDcvrFJcvwAZ+1qcW2YKBoWjKTDs1stHu2nfP/RkLWrDU5GEZcCBwwCQAictWuE Rw+wuleKy+cE8BRACMGlzQ62cw9fl91fsQ1QX/29kw0eNW6i0dVUEwr9uX1h1p1WZipeF6Xo JQ9x1p/J/06mYLkoymkLYvTumZCzGL9yAs2qta/uT/CVl6/RP+yzttnGSRLeO4n5wjNdfu9b t0hYBGF7pJOUgm8LyZX1Jpmako0yjicxDd/h+Sse37+7x+Wr21wOUm7vj0kNwkonJwi3XJj4 nACeEly78Rw/jG0uWbNPKubctkwIZs6lRmJKbZYZnnm3dQGluSv1kj9hkkac0C2dUmkGqsw9 AEtdpMY8lrkzF+ZW5wGTkqYj8TaaHAwiPrUVsHdvyK2d/Vrk15BlGSqeIhwfVMafv/keUtqs NyWv//BhidDeubPLO+az0wHJ+BilQHYul6dz6irO4X2BkIspvwoD+ZdEUTUnrxqU9bp52dtT B4NI8Le++jwdMc/UrGah5vNdjgq6HPt8HXPv0mkgRF5drjhLbTLmh7t9Hh0MGIYJb9zaw5MZ P3w4KBXDrULs9kin5RhEliXsD6JinDpQShEPD6B9Cdm9Urz/on7pqSs4h/cFk9GYhl3myvPc GzWXCLw/47caZFrWx1A1+bd/8iZfunGJ338nBpFvGPGJcCcPiknk3DojjSOErdOt85tKmaPM RyvhXJaBSCEel4xplWVkbhfh5TlLaZqy8/CwOPhbH2dq2zbj8Rh/duaxvmZZVn4sbQp+On1i hBVCYDk+aRIinGDh/jkBPCV453tv0nXK+14VswrLaZ7PYxZfW8bBVm1RhNXpxwBYDjvxBunt hyg2CxRuXXlpsW2WMjq8XzISqzvJSnMz1mVeKxFnNCIaHBUEAOXD/NI0LQ7C1ic/jkajvK5S FGFZVn5SZjiFWBkjakmaMd+ZlksqpSWWlAghSeMpslmOAeg5nhPAUwClFMe33mBDLCKH0ieo zFuzSgachuDV9AgdWzAhExYP1DZC1CPzKgmk1a+6xDnFLH9I31uiqumzjqsH8Zk2QnWd+hxf fURshiCeDHEPb+dp5jNJpiWadrCKeedkaULY30dsvVCssspMzgngKYAQgsbmZdTOPUxkNCs8 z6+XKzYsy79fDhUC0jkQ5nxmY+tqDAtEg4mA5WvLCKYU1z7FILYsi0xKwjAkCILiGf1PH+qn z/0NgqA4YFBfsywLufYMKh3grV89c1BsOp0izaTECpwTwFOCL//S3+OPfuMR3cF7tUik1KIe D09OAOaGm/m1sudII2uWZcU42pCtEsJZ4EnIE8AaPcLxZ4V/V+x9MeXDHGV1Beec7OI0wXb2 sJtrpYDWMtAR7POqED9hcF2XT33t13jv9/5nmg6l3CDB7CSXwsCcQ+nkk1lqw1n87ppbL1RO ZKYpsDqQZRJKGWZxhiXBqtODaAJv7QqJkwf4XMcpuH71OX0Ax2kEGR0/QIxPsNvzA0iWIbjr usRpBNKpne85ATxFWN/c4q1Y0XTKSsMyrb/gytofbyDcCzcu4GcRx4nkYtPivYMJ202LNyvp yUWqjxD0Oi0uNODthwOUFHzh+W12Hg+5utlk5/GAqxsN3t45YJoudjDP7xGVtIezeZ9KPc6O TWo0GgghGI1yl2wQBERRRJZleJ5HGIYIIfB9vzhs3Pd9JpNJ8Xu+NpmXfzkDeOtXyQ7ukvqb hndrDudxgKcIge+jnOaM48wDVoWKUuGodVxZcyvfsXF9h2gS0p8mHBwNcH2/tMcX8lwgDcf9 Ma6Xn6/13DPbPLfdwheKk0nEs5e7gKThVk+InxNp/i/vr9fp8LMv5rV5tja6/OqXn+OlG9v8 l19/kdeeu8gvvnaDK+16fqoPrJ5MJkRRhOM4eJ6HEPnZvdrjY/7uum5xJpllWcV5YwB2Z5to sEcWTcrxiCKjdr4jTQhBsHEdOdpF1RwfdU4ATxEs26Z387OoWQxApzaYBqCJ9K82j2jEB7XJ c0fDKWmcsrXRxrUEF7d6NH2Hpj1PUjPdkkopNtdaNHyXz1xb4/bth3zjuw8RrkvLtbm92wcJ cZqVkEhXsTBIFoBpGIFl0fAsui2fx48OiZXi9fdOSMMJqZQ4S1QXfaK7eV5YFEX5nLN45gZ1 6DY94jim1/QBRdu3CwagvUHF+/N7ZNN+/bssx+0QQuC11rH691Cj/dLcxGQyUVq0nMMHD5PJ mG/9P/873dHd0nWzIrKJ7g9H8P9OX2Xk5n5rc59AVekwz9Et9Fql6CW7+FvPFtccWxLGOspa 3q1leqZUmjA+eoDoXDaIKR+z1fTpBTadhsv9gzGdwOGgP6HTdDkZJ/QCi0cn88rQxTrjMW46 xm5vFzu/ICeKjV6XG+sWr98+4sJml1eudnjYj8imE7prPfpHx/zg4aBWv08mfax0itO9xLOX utx5eERmO7x4uct0MiWRDtPJlLVOA5KYtx/2ScMRo/4xsj0/zf5cAjxlCIIGX/xb/5Ajq1e+ oQPCFSlwqQm/3nqT3nSn5BnShizMjOgZMtT556uenTBOoUhqXvTilCvAUWqjnxqNptzbH/K9 u4ecjKbc2x8wiRIeHY0Jo7gW+avrlEa6hZSSo/6YWImZXTDleJqy5tts9FqILKXZaWKbKRjm WlU2C0UrbNfGEYosjtkdJjiWxbMXmjQdwd3jCEvlxB+PjhGN8v7gcwL4CUCn2yPqPcM4VtwZ z3TZuY6xAGse/N3u21ycvjPXZc38Asq5OCXPx1KrtFypoaxm5Q/pwzdKqtQ8xlpqXb12VjDn vb3ZQgjJqzc2aAce/ZMhr9/aZ+fRMW8/PGF/v0+yLEFP5ZLJsm0urbfYXmvRC2yeWfN4d3/M KExZa/t8ervBD3ZHKKVwmmswLquY5yrQTwCUUiRJwr//N/+S2298k891o+J61Y1pwiTO+Jcn 17nnvVBJvCn3Xd2Uvhbv4l94rtKvydNz0Dp5cbavyhju30N0L5f6M6mqqhppaWPO30zjVtEY Nx3hdMtlGH9cSEaHWEJht3JXaLMZIOOQQZQtbAE1f8/CIZP+HlnzIkLa5xLgJwFCCBzH4eYL L0MaE6cKYTm0Lt1EOgGdZz6L1whAuHRvvEKwdpHejVe4cPUaf/9Fl88H9xCqvp7+Anec2RS6 bo/p+RcGwpoeprkwUjUSpHyh3N9iyxIpqsX+Vm7XPGOGad3cRqMJgyirzHH+u5ZY0mvR2rpJ 1n+IQp0TwE8Srj/zDFtNF1sCCtzWOpCSTGP87hqW1yTo9CCbMDw6wfIbbF1/lr9+8YSXw9cR WTld2Kw5ujLIpf8ZSG+e+L5qH0AVxOx/y8q51BFfnptWH6iq6+NssJxQSus1/9bjizwBRUXj 80DYTxKklHz6F/5T7vzRb7NlC5z2OsHW8/Qub7D/g0fYrs346JDm1mUy2eb49lvYwRrNtW1+ buMv8I/+nD+zvgBWHtBZ1OJzSCdHxId3S/cKNUAj6ixjsoRGKiMbHiDSxbz8xTDYEpVM2yxZ ApaDyBLiLCJLTqn/ubLX8hwAVDjEWr9avm+qlJTXreaNECKPSE9OHp7bAD9pUErxox98j90/ +Cd0Gj4qTRCWhXA7WGpAHGVk8RSFRGUp0nYhS/I8HqV4/aTNt8QXUJa7UN9HzLwi3XgXZ/26 Mab29Cye11WCLKW/t0PWvlK+rFTJ62QilKwY53qNwfQRonPFcM8arl89Zx3tFlQkmJgvqvr+ ZpfVaJ9mq40ddCpJhnWIX7ZXAFQac7j73rkE+EmDEIKjxw9pyJRkOjvkLQHCSWlLoJrp/FkS Ffq5EIIv9gZYx3/Of0g+T2Z5VLGk0OvNqhOGC9VsUzWglZidkF0peiVQZPOHFxDN7BNy5OoO 3qERvrdUpcmU4HH7M6DrCNUQUf0WUP2LJDy6Tzw6LO1wq0vPMK9ZboDT3qT/w3+H3b58TgB/ FXDjhc/yxl9+g3U5Wbhn1tgpqzga8QSv9UZYJ3/OHyafJ7GbM+6ssKYHYPsIaa3cyFL0WYec dZdWZKjqe6WiVyrhFWuHm/Zw6VjTVPA78RUS6otenWoLOA2EVNjd+TloxX7rJcSTpTHZ4BHR yWOCq69hNdfPjeC/Cti+eInLP/13GKenGXyGWlAKmAle7Yb8gnwdJ5khWZbREFM6Tpq7HGft pdBqzxm9K0syPpfeNKDkVRKL3qbTxhJCsr3WwHUdNpouzYbP5Y0mbg2WCrdBFs9zgeZG9/ID wbPpgCxLifqPkLOA2DkB/BXBS5/7Et6LP0+U1Yj5M3pDXurF/KL1Ok7cRwkJQmK3t0DaoLkh pgP0yUHNXKOrnhaiXMKlLm+6bj0KVUrm6210ePXZbT5/c4vrVzdpy4ybl9fxrXmSmwnZbHNP KVSnYNmRr3ZzHeF1sBu9uTds5erP4amBlJL/6Bd+jeTm10gzIxhleDGqhptGNDP49Hw74q9b 38ZL+mTpvApFKTnOdEmy2hePmJ8iU7hXi5SN0nHbJXTUaQ6mFDChbsxq3KDtO+w8GvBwb8h2 NyBREI3H9OM5cpt9CcudvRNZS+JVF7FCkRy+h9O7PN8/sfxNnMPTBiklr/3M1zm014FKegPL OZmpkwsheK6T8jftb+f1SCu5M+VgWD1UU6pzi2Ie6y0T5byNOTNzI48JpwW2TGl37+EhQmYM Vcb3331IP4Hv3z1aaDefT973pY1WvhFISJ6/tkkvsLm43sK1LZ69ss6F9sxtnMRIx0dlCSqe oqLJuRH8Vw3tdgd38wbi0aEROJoTwemqUI6mN9oZz8WH7MzcnTBHGlfCNMmwbYvAFozjjLZn 05/EBJ7NZBqXkXvmniztnLItfAuGUUbgSFIETddiOA6JF862MOvQ1UMdt06ThO/fzYvy6tK8 Ud2KC+6dr29zrcnh4YCJEAzHEdc2W0SWy3QyRUiLa5stHvf3me7+kMRpMTk+LN7xuQT4EED7 wmWOI8E4VqTGObeLJ0zOYa4OiUJSvNI8Ro0OSs/32i1evp5novbaDV597iKv3NzmS5+5woW2 z1/73DWalonsFS47G/eVZy/w2vMXudJr8KXntnBtm9deuMyaV91QY/aynIClUATxMSpLUVl9 msepoFIQAtfJ07Rbgc8Xbq7x4HCMbdust32iaYjnOmTxhMQOUO1L0NjMy7g3Ns8J4MMAX/jq z/Pqf/4/cPmX/hHO5/8Ox1ZvpmKIwrwrpRgYao2JYGu+5LnpWwVCCQTH/THRrLHvu+wfHJMB j/sxL15fI1OSpmeVCKzqWcmU4t7BiLV2wHiY59yMwoTpcMTjyftDXkfCXxd/xucf/xYbj74J 0RBQOUEsS4E2QECeH6Xg1r0DhB/Qkgl/8sM9okzx4NER+4OQ4TTm2+88Ity/g2pslnsQ5yfF fyggTVPuP7jP0eERlm3zhV//b/nBt7/J4P6PWJs+xBIV5BQClC6EPleV9iaK9/yXEHLOlbc3 W0hp8drNTQ7GKa7vce/xCRc7Lv/hnRMaTZ/xJPemoMoGsxmLSNKMt2/tYreb2FLQCyzevnvI cjjd7dqQKS+7e7yo9tk/fof9rEWYKr679nVwm0XaBtIBIcji/NRMlcYIr5W/A5VyNJgC1f0I 8ex9RcT9XRK3A7Y/V31mdtR5KsSHAJRSxEl++orr5AabEILJZMI3fuP/oDHYoWnFhW5fMTML Q/UvD+GNtV9CyHq+Vg6O5baDmeKgsoTB3j3S9hXD0zOPo5r7mfVVbZCXIsHhkF8Z/jbXvMVA 38r3MOtzL3bpJza7SYNNe8pd+xm66SEXxTFWbpzwp/YXmAgfd/vFlXVNAUZ3XifZ+mxp77Ce 7bkE+BCAEKJAfBMmkwlf+Vv/gMlwwA/+1T+lmxyXcu7N0xUzpThQvdz8VKfV+5kb2ctgWQ7N /N6K9ZzS96rnADbtkE075DmR1xJ6ge+i7DKR/W31Te5GLW7fvcPRjV9e2meWJgsuZg1KnadD f+jg5OSkqJLc6XRwbIcr12/w6t/5rzlK7AXkmrsHBY/l1iyPRy1NaZBCWxeVHCLqHslbLZQ0 1G1XEtgZI89nhCryWkJx0xuwzgkqTXJETxNUlua/z4xrIWWePSsEW70GDc/m8kaLbuCw3m2c S4APG3S73eL3+/fusbmVb47f3LqAc+Vl5N6bC88IIbAkfCq7xfeym7NIMEvZcN3BG1Dw+oX2 RSBppupo6SAUcz39A4Q6Tr1sDDUr6FtKzMOUXYosTWi0mnzp09s8fLDPsWxwveuzttU7J4AP M1x/5pnS3+vXP83td79DovKdTV57Den64AQcjSPedpw8fXoG2ptTm4ag9WGVV6kuzgibNRV1 bUswd5MWm2FKwbQPTgKU1S9Vll7CgvblXM2puG6LxQz38X2XR3t9XEdwwZd8dyfkZbt/TgAf ZjA/vBCCl177Elef/TSOYwOi2NWllKLf79N443u8cfsRJ6oJs4JcVX++m4hJRgAAEVNJREFU /l3NO56rM/Ps6aURaCiXY8m9R1VkXzyA44OChYQHTbBCzImjKuHcJsePHjIOrrDzcIDnT+gP Qx6P3XMC+CiBZVk0m02iKMo9R/H8ELhGo8Ev/vxP8/WfU9y6fZu/+MEdfvhwyNhqI52gRCxi ljJcQhg1r1NazeuBmcE43sdOJzNi0moRs7bzeYpkir3qqPoPECSGajbz5ZYYB5DFY5Rw+cHd vCjWMEpQwLv3Ds4J4KMEQghc12U8Hi9Eh3XlNSklN27c4Poz1winEbdu3+GNH93nvcOYxO2W XKSlwrtCkKn87AKEwA4PudigpAu1rB1eit4kkMmMYAwnqWl3S/DlQn5ECVbp9U8CzzlHfH+4 w7R1bW4HGH1nJzvQuVoyiUx37jkBfATBtm2iqJwl4/s+7XY7r4cvJWGY0QgCXvnsZ3jls5/h 5OSE7/7wFm++u8vDoUAVJ7YYSJgleSHbNOZiE/7xP/zVkn6fZRn/5jf/Kc2df4dv1Se/rQLp r9G5fIn+g4d0bzzH4J2/IEkS2s/+FMnxDv72s0we/ACvt8nJnbdr+6iWPGnImIvhe7zXulpY B4VapjJUOETNtngu5B9xHgf4yIEQgmazSRzHJeTT3L/RaBR/x3FMGIZYlkW32+VrP/UFvvql jEePHnP/0V5599ns9zhu4jgunfY1hBDFXmQxizv8wq//F/zpNzbJ3vwtGjJduVusClk0RHod ms9s4/oZlueg/At4vU1smeCvbZMN7mI16neJVUGP+ml1hzvh58Dr5MShVbpwgGhs1G+TnM35 nAA+gqCrLeuD5oQQJElSnL0FeV18KSXT6ZQ4jknTHFkty+LixW0uXcq3ElaRdzKZFAfVZVlW SBr9rG3bfOXrv8qfChi+8Tu0ZHxmIrDbF2hcvEn/7jsoewtv7RJWIhCWj7e2RRZOkH6PxvYN Bu+9TjypKbcoBMIgXIA1OcEOj3jt859lw4fDKfQ8wVvv7fFsa8IfvaEPFp89kSWo9bxw2DkB fETBNIYhz8c3CQDKOfSQI7t5FKmph2skTtO0qNysr2tIZ4f7OY7DT/3Cr/LD7as8+oN/wqY6 PhMBJCf3ufeNfwZAH3DXr5Ic32e8+25pTkfvvLXwrFn5ocrNH6Rt4s42UgjCTOGiiFI4GUwZ b2xjbZSfSA9vF6rSeST4Iwyu65YQVZ/Fq0GfsFgXWKrLuNRGtub6dYZqlmWF9+nFVz6P/Ozf IMqWb9xZtb0zOrxHlqmFZ+qgmoph/jtQbYTt8/BwxOHxiLuHY476Y7prHQLXJrDKfQhp05UT nm8/+bGr5/AhgSqywpxDm8jiOA7T6dRwFc4lhomgpSBWXYJbJeCljzZ94dUv8Z3v/Auu2IPS 8+ZPs8+6HWNn9QaVCwOYAa/8pMi7Dw/YmY2zM+tzd79f7YTttSY/85l1fu5nvnouAT7K4MzO 29KINZ1OF7xDtm1j2/YCMmujuU4aVE+4r1OldLu1tTWi7vUFbq+U4pF7mUeXfprH21/mQfN5 YiUX+qqTTlWoZhalSrCf5hnMg9TmlvUM286QVnKIleZesAZjNmR/MUinFMexw5vvPiCKwvN0 6I8yaCTURw9pbup5XnHEqD6j9+QkP0vMRNDq3mLIpUiapgVx1YE+zE4T16Pdh7zxW/8Ll8K7 RQrEg6nNV//7/4lWO3e3JknCv/8Xv0Hn1r/BE8kTuU+rcJR6DJ//GzSSPs//1Nd55tlP4TgO Sinu7tzj3bsPeLx3wHPXtnn7/jHfuhuhRM4EZDrBifv8N3/7K3zquZvnBPBhBm2UmudjLYMw DIvD5wA8zwPyCHGapvT7/ULtqao7tm3j+z7j8ZgkyZGzbszqc5BLGCklw+GQt775+0y/+wd0 0mPC5/5jvvbr/1Vhl2hp88f/3+/hf/e3ccXieV1neR8AQ3edm3/vH/Pcpz9zqvo0Ho/5X//v f8mjEdzccGn6Lp/91FV+8xtv8Nrzl84J4MMMOt3BdRf3CtS1DcOwiBJblkWj0cBxHMIwJIqi ArmrereUEsdxihMbNdGdNSvTsiwsy0IIwf7eHju33+Gzr32x6FOrXK7rMp1O+cb/9j9yXe3W 2gSr1pcowWTzM3zu1/87ti9dOf2hGaRZRv/khE6nUxD3nbs7dDqdcwL4OIG2A0ajEVJKLMui 1WoBOceOoojxeFy0XeqdmZ3kWJdIt8pLo9Ut3/cL4jWNbsdxsCyLP/63/xr/O/8M5wxSYJpJ 9jc+R//kmFd/+uu8/NVf4IPE13Mv0EccTCmhPUOTyaTw1IzHY1qtVmEbAAyHw1rurrk/LEf0 ZQirJZDjOKUTHav5SrZt8/IXv8p/ePP3uZo9WhlEU0rx0L5I55lX+frP/Cxra+tP9nLOAOde oI8BaFXC9ATFcUwcx0wm8325mgg0B9WIpw+wNqPIJlQlgekSrYKOIJvtTUiShFa7zWd+7R9x KDrL1wS8l20QfPpn+KW/+StPBfnhnAA+8iBEfvzSaDRiMBiQpimu6+I4TqFymKqIEIJWq8Xa 2lrhOQnD+eEVOvfHBI3QUpbdmHUIbrpQq3YGzL1MFy5fw3rl1xhkbil6reFQtQivfYVf/bv/ CY7jvN/XcyqcE8DHAHQSnNbBqzAYDBaS50yOr41jyLl/tQ/zbF/dri7CXBcvqP6ulGI8HuM4 Dp//6s9xcu1rxbNm+8PY4qe+8tWnivxwTgAfG5BSEgRBgTBVZByPx6VUCSEEQRCU1B39TJIk RVQZyqkSZn/V+zrhbhkIIQjDsHCxOo5D59JzhFk5cpwp2LM2uXDhwtK+Pig4J4CPEWivT7vd LiK9GtI0ZTKZlIhAtw+CoJS+oFOp6yBJEuI4Lu0ay/cfhCXj1wSTGB3HKQhMSskLL32WPXql NkIIWp01nDO4f39cOCeAjxnowFa326XdbpcCWtoorqpCQRDQ7XaRUhJFEc1ms0BU3Ub/0+7M MAyZTqdFjMF13YUMVTNNI8uygni07QG5Ae6/+HMzKZCPIQX44SF7e3tLPUQfFJwTwMcQNLJa lsX/39657cRtRlF4+cycPAM34SaKhCpVqiK1VW/bu75LX7TPkOSiQo0oDZCoTcD2+DD29IKs PdtmhkJgKMX7k6pEyQSK9G//+7D2chzH0uUBIMOudfUAB2iLxQKe56Gu61btwLVL3U2Kokj+ DEArcLpy67quW59nwf79jz/D/ekXvB18hbT2US+BvfovzGazWw3LvgSbAzxxHMeRwVSeXy6Y lGV5ZZjEQlibYEVRJEsxYRjKgdVwssrD3jSNfA19A3DaXBSFfG+mQcPhEN98+wO+fvkdfj/8 DX8fH2L+6lec/XmEvb3ttD+JTYJ7QlVVuLi4lCwHQYDhcNg67E3TIEmSVgeI2iHm9k3TyMrl Ovk0vw/1QUQHAesHXUMwreINwdZsHMfy2ZtKpm+LpUA9Qh9S3eUBLrtIk8kE4/FYnug8pMvl ElEUYTAYXMnv9dfl9HlTe5Q3TJIkVzpSZVliPp9Ll+ghDj9gKdD/mtssk3QPJifE3TYoh2hp mspqJOuD7gCsOxRjbcBaIcsykWiwGC/LEtPptLWQw0EcUzXWL9dtk90XdgP8j7np4eCh6rZF N+lw2BnSkuduW1TLL3RA8OAynQnDUGxcusXxcrlEWZZwXRdRFLW6TQ9x+AELgF6guzae134b TF3Xa3v3nBFQFk0XCgYOA0ofVgrztBaIn9vZ2ZE2qw4+5v+EadJDHH7AAqA3MAjiOMZoNAIA pGmKJElaWiBNEAQSBMAqXeKTvBs42jUiDENRnwKr+mA8HreWZIjeP1gXkNvCAqBH8ElNFzl2 drg0vw4Wx0EQyBrkOpkEt9cYJOv2jD3PaxXWVbXyFNIdqW0PvzQWAD2F02K+Zebi4mLjwXOc Sze66zyHeMCZ8mj1J9MiFsT8d9w9BoA8z+VmWCfo2xYWAD2FBWt3N2ATdKYGIKuNhE//09NT HB4e4v3793jz5g2qqkKe5yLLTpKktbWmVajrOksPgbVBew4nvLrrs4kgCDAajZCmaUvZ6Xme yCuo9/E8D69evYLjONjf38fJyQlmsxmyLEOe53JbnJ2d4eDg4Nodg21iN0DPcV33SnpzHXog RtOtuq6R5zmapsFoNJKletd1MZtdvqSbNQRXJj3PQ5ZdvtBat0ebprmRC8ZdaA3hTAph3Jam afDx40cAq2J2Pp/D931RekZRJE96Fs7M9ym2ozKUCtKiKDCZTDAaje518b1LXddSdFsKZNyI bo7O4RiLXi7j0JmuKArpCCVJIoEAQGYRDIwwDFtff53F432iO06WAhk3htJotlK7XR/atYdh KCa6VVVhMpnIE56LM9qynTeA1iptWsi5b+wGMG4En/oMAHZ2tF6ISlAArV9ppMs/YwqSpmlr OaYsS9ES3dQQ7LYwMMUA7N6/g/Fk6UqcF4uFmGhxk6xpGkl/mMIsFgvR+gAQiTXzfM4QhsOh 7AtsIw3Sznki0b63r270Ch5+ukhQPk2fUeqEFouFFL88dDTI4g4ATXzpWjefz2Vv+L5YLpdI kqQls3Bd1wLAuD3M57VQTkuZgyCQ1Id1AeXY2mMoz3PRCzHF0iubaZreqy6It5NWo1oAGF+M VnR2J7hFUcB1XRG/8fCxgE7TVGQSNMuiTYvv+zIwu06icRvYdWJ7lkFgNYBxa7gvwDaonuJS 418UhaxP6qd8URQigY6iSAKAaVFd1/LvmCLpPeIvhR0sDvAYdHYD9JS7PlV938d4PG61LulJ CuDK65v4PcMwbOn9dZeIhTF1RkyFtNXKl6JfIMIhnNUAxp0IgkB6/Nw3ACAtxk3yCk6CmT5p KTWLZt/3kee5FNKbdhb+DdYrvK0Iu1QWAD2EB+6usADe29vD7u4uXNeV1IK5vOd5cH3vyk1B AR0tWtgKHY/H4kk0GAzk/zfLsisDs00/G/+r6xpZlokbBgAsmhrNslkt3JsW6GmgpQT/FXVd 4+LiotW5qRafneCay05QnucSGLp2qKpKDLx06qPdrvlZ3/fFvU4fdgBSOEdRhOFwiKqqWm/G KesFPNdF6AcWAE+JxxAAAOSQs+isqgqO68LveBABq8EaP6u1Q5RT7OzsSFeIClN9W3BmoH9+ nYLx1Uyu66JuagAOPOWKbQFgbAUeQvbd9cu3uxNlAPJZHnK+4glYtVupHmXb1fd9pGkq3SQW uABEnj0ej3F+fi6TZa5fUtFqbVBjK/AQM01J01TmABptp8iXeqwLEqY51AjRw5R9fXoXARAH O/59URR49uzZSv7w+T0KYRhaABjbhzvFURS1prvaNoW5PbVF62CmwlkCvwYAsVTkwWbq8/r1 axmwsbbQwWJdIONBoERiOp0ijmPRC3WhZKLb6dE3RxRFYr1CEZ1Wn/Kzruvi4OCglYLpVMik EMaDw9x9OBwijmN5OvOprE1zr4MHWO8id9WjjuMgjCI8f/4cR38cybSZaZfjOFYEG4+D5XKJ T58+iVeR9g/S6AUcFs7cKPM8D4PBQHRIpFkuUZUlTk5O8OLFCwDA+fm5aYGMx4PjOJjNZmia BlmWyRtlgFUQUMzG3QIOyNhGZV1AOcXbt29lmAYAcRxLcFGvZDeA8SjhgaapLvP+dakR321A t4kgCHB0dIT9/f2WwwRvF32L2A1gPErY09dP8E3QvjFJElGcajcKPZmm7Yq8rGObP4RhPBSO 44iOiAI6oD1D4NOfu8zHx8cWAMbTga1WSih0O5W/ZxdoPp8jjmNLgYynhed5mE6nGAwGrbdh 6lXNDx8+4N27d9jd3bUAMJ4eNP2lElQ7wZ2dnSFJErx8+fJy38C6QEYfYFv19PRU/EoB8wY1 eoJepGFBXJalpUBGf9B7yNxmswAwesG6AZrtBBu9xwLA6DUWAEavsQAweo0FgNFr/K59nWH0 iX8A3YsbcOMoH3YAAAAASUVORK5CYII= </thumbnail> </thumbnails> </workbook>