 Linear Regression 6.2

The goal is to test the functional dependence (prediction) of FVC on elderly subjects based on their height.

To test the regression assumption that there is a linear relationship between height and FVC and that the residuals in FVC are normally distributed and have equal variance along the linear relationship with height, we examined a histogram, a P-P plot of Regression Standardized residual, and a scatterplot.  All graphs showed a normally distributed linear relationship.  

Further, a linear regression analysis was performed to test whether the proportion of variance in FVC is statistically significant.  It was determined that the proportion of variance in the FVC was significant (F= 699.4, df = 1, p<.001) and that the correlation of the height variable on FVC had a predictive ability.  

Table 3.  ANOVA for the Regression Equation, Height (cm) on Forced Vital Capacity (L)

Table 3 shows the computed proportion of variance in FVC, in which the residual sum of squares (328.90) was subtracted from its total variability (617.18) giving the amount of predicted variance (288.28).  The FVC predicted variance divided by the total variability gives a coefficient of determination.  The F ratio (699.43) provides the test of statistical significance. The results show that FVC varies significantly with height.  

	 
	Sum of Squares
	df
	Mean Square
	F

	Regression
	288.28
	1
	288.28
	699.43**

	Residual
	328.90
	798
	.41
	 

	Total
	617.18
	799
	 
	 


** p < 0.01

The regression equation (y = b0 + b1X + e) is the linear equation used to fit the best straight line to the data.  FVC is the dependent variable (y), and as shown in Table 4, can be expressed as a function of a constant (b0).  Therefore, y = -7.193 + 0.062x + .002, Don’t include an error (the 0.002) in the function.  You include the error when you are writing the equation to exactly predict the y’s (you often see this written with beta’s instead of b’s), and the error term is different for each data point.  When you write the equation with the estimated values of the slope and intercept, you don’t include an error term.  (where x = height).  The predicted slope is .062, and the 95% CI for the slope is .057 to .066.  The 95% CI, which provides the lower and upper bounds for the unstandardized regression coefficient, does not include 0, suggesting that the slope is significantly different than 0, meaning that there is a linear relationship between height and FVC.       

Table 4.  Regression Coefficients 

Table 4 shows the Unstandardized coefficient of the FVC intercept constant, the slope of the regression line coefficient (Height); their t statistics, significance, and 95% confidence intervals.


	 
	B
	Std. Error
	
	
	Lower Bound
	Upper Bound

	 
	Unstandardized Coefficients
	 t
	 Sig.
	95% Confidence Interval for B

	(Constant)
	-7.19
	.385
	-18.7
	.000
	-7.94
	-6.43

	Height (cm)
	.062
	.002
	26.4
	.000
	.057
	.066


The 95% CI can be explained further with an example prediction using the regression equation for a height equal to 160cm:

y = b0 + b1X + e


= -7.19 + .062(160) + .002  (again, don’t include the error)

= -7.193 + 9.92 + .002

y =  2.73

95% CI for Height coefficient = unstandardized coefficient (Height) ( (1.96 x Std. Error)

This is not a CI for the coeffiecient, it is a CI for the estimated value of y when x = 160.  Because the regression equation is not expected to exactly predict y (the data points tend to follow the line, but are actually scattered around it), you are finding a CI for y centered at the point predicted by the regression line.  

= 2.73 + or - (1.96 x .642)


= 2.73 + or - 1.26

95% CI for Height coefficient
= 1.47 to 4.0  (do this again, but use the value for the height calculated without adding 0.002; otherwise, it is correct)
The predicted slope is 2.73, and the 95% CI for the slope is 1.47 to 4.0. Again, the 95% CI does not include 0, suggesting that the slope is significantly different than 0, meaning that there is a linear relationship between height and FVC.  The CI won’t say anything about the slope, just the values expected for y when x = 160.  
As shown in Table 5, excluding the outliers improves the model.  Noticeably, r-squared is higher (meaning that variation in height explains more of the variation in FVC), the standard error is lower, and the slope is farther away from 0 (although in both cases, the slope is significantly different than 0).

The most important factor to note is the increase in the r-squared value.  The model with the outliers explains about 47% of the variation in FVC, and the model without the outliers explains about 52% of variation in FVC.

Table 5. Comparison of Model Summary.
Table 5 shows a comparison of the regression coefficients r, r-squared, adjusted r-squared, standard error of the estimates, and regression equations for Outliers included and excluded in the data.   

	
	Outliers Included
	Outliers Excluded

	R 
	.683
	.723

	R squared
	.467
	.523

	Adj. R squared
	.466
	.522

	Std. Error
	.642
	.599

	Regression equation
	Y= -7.193 + .062x
	Y= -7.788+.065x


You didn’t include the plots of the residuals in the last posting, so I can’t comment on those.  If the plots of residuals against predicted values look randomly distributed (there’s no discernable pattern, and if you drew a best-fit line, the slope would be 0), then that is an indication that there is no deviation from the assumptions of the linear regression model.  Another word for the fact that this plot would look random is homoscedasticity.  This means that the standard deviations of the error terms are uniform.  So, for example, if you plotted residuals against predicted values and found that the points were clustered close together on one side of the graph, but were spread out on the other side of the graph, then the assumption of homoscedasticity would not be met.  

To test that all the assumptions are met when doing a linear regression, you should do the following: before doing the regression analysis, graph the data to see if they fall in a roughly linear pattern, and look at histograms and Q-Q plots to see if the data are normal.  Then after doing the regression analysis, look at the plot of residuals against predicted values, to make sure there is no pattern in the residuals.  If any of these assumptions are not met, then the accuracy of the regression line is called into question.  
You did include the table below, but I think it’s just for the outlying points.  You could plot residuals against predicted values both before and after taking out the outliers.  I would expect that the standard deviation of the residuals would not be uniform before taking out the outliers, but would after taking out the outliers.  If this is in fact the case, this would add to the arguments that the model is better after taking out the outliers.  

Casewise Diagnostics(a)

	Case Number
	Std. Residual
	Forced Vital Capacity (L)
	Predicted Value
	Residual

	190
	3.428
	6.16
	3.9593
	2.20075

	244
	-3.118
	1.60
	3.6019
	-2.00189

	281
	5.719
	4.39
	.7184
	3.67162

	331
	-3.500
	1.54
	3.7867
	-2.24673

	432
	-3.353
	2.09
	4.2427
	-2.15267

	447
	-3.879
	1.66
	4.1503
	-2.49025

	704
	-3.645
	1.28
	3.6204
	-2.34038


a  Dependent Variable: Forced Vital Capacity (L)

