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The theorem that is used here is:

Let 
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.  In other words, if g(x) is continuous at u=p and 
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In the given question ex is a continuous function and given 
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. Hence 
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We have 
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. Taking natural log of both sides, we get
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. Now using #1, (as natural log function is continuous in its domain)
We have 
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.  It is in the form of 
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. Hence by using L’Hospital’s rule we get 
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.  Hence we have 
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