1   Find the point on the graph of y= e^x at which the curvature is the greatest. 
For a plane curve given parametrically as c(t) = (x(t),y(t)) the curvature is


where each dot denotes a differentiation with respect to t.

Now for the above graph 
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Substituting to equation (1)
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(2)
So we need to take the first derivative test to fine the maximum of the curvature.
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The extreme happens when 
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Now we need to use the second derivative to verify it is indeed a maximum.
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when t= ln2,
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So when t=ln2, the curvature is a maximum.

Plug it into equation (2),
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The point on the graph is 
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So on point (ln2, 2) the curvature is at the maximum of 
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2   Write the equation for the surface generated by revolving the curve x^2 - 2y^2 = 1 about the y-axis. Describe the surface 
Use the fact that the distance from any point on a circle to the center is always equal to the distance from any point on a circle to the center.
Let P(x, y, z) be a generic point for the surface generated by revolving the curve 
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 about y-axis. Fix a point 
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 on the curve with the same y-coordinate as P. Then we have


[image: image14.wmf]22

1

21

xy

-=
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The square of the distance from Q to the y-axis is 
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 and the square of the distance from P to the y-axis is 
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As the two distances should be the same, we have 
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. Therefore, the revolved surface equation can be obtained by replacing 
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The surface is a hyperboloid.


3 The parabola z = y^2, x =0 is rotated around the z-axis. Write a cylindrical-coordinate equation for the surface. 
Let P(x, y, z) be a generic point on the surface of revolution. Fix a point 
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The square of the distance from Q to the z-axis is 
[image: image23.wmf]2

1

y

, and the square of the distance from P to the z-axis is 
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, So substitute the above equation into (1)
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In the cylindrical coordinate, 
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So (2) in the cylindrical coordinate is 
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4 Write the equation of the plane that contains P(1,3,5) and the line L: x=4t, y= 6+5t, z=3-2t.
The plane passes through point P (1, 3, 5), so the equation of the plane can be written as
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The direction vector for the line is 
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Now we pick another point on the line,  let’s say when t=0, the point Q is
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Then the vector 
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is perpendicular to the normal vector of the plane. Hence we can take
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 as the normal vector. 

So the equation of the plane is
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