Running head: ABSTRACTION AND ENCAPSULATION STRATEGY

1
ABSTRACTION AND ENCAPSULATION STRATEGY

3

Use of Abstraction and Encapsulation Strategy in Computer Programming
Name
Institutional Affiliation
Use of Abstraction and Encapsulation Strategy in Computer Programming
 Use of Abstraction

Abstraction in computer science is a crucial component in programming. Programming entails managing the complexity of computer systems by creating complexity levels as one interacts with the system; essentially, as the developer moves to a higher level, the current suppresses the intricate detail below it. By suppressing, it means that the lower levels' details are hidden to bring out other information. The process emanates from abstract thinking, which is closer to realistic thinking. In computer programming, it is the simplification of a complex operation by hiding some unnecessary details.

One of the ways in which I have applied abstraction is in data abstraction. Programming in Java focuses more on building different data types (Wigmore, 2019). Notably, in reality, data is a collection of characters; however, it is a collection of bits in computer memory. Therefore, I applied abstraction to help the interpreter understand what should be done with the data because I highlighted the type of variable value and possible behaviors of the variable. Eventually, I managed to hide the complicated memory management and provided general actions that were applied everywhere. The strategy was beneficial because it increased efficiency because only wanted details were left. While using abstraction, I utilize encapsulation by separating clients and data types that enabled modular programming. Encapsulation is the wrapping of variables and code acting in methods or data together to create a single unit. In encapsulation, the variables in one class may be hidden from other types because they are only accessed through the current study (Wigmore, 2019). Therefore, while abstracting the data, some data were categorized in specific classes such that it was hidden from access by other types but accessible when using the current study.
A situation when Abstraction may not Yield Best Results

 Sometimes abstraction may not give the best results when the code base is wrong. For example, when I want to build a car class, I will need the body, which may be for a sports utility vehicle or a sedan. The case base, in this case, will have two subclasses, the SUV and the sedan. Therefore, the car is an acceptable abstraction because the SUV and the sedan are suitable car examples. However, the problem arises when I add a lorry as a subclass to the car base because a truck and a car are vehicles. When the car base class is not changed, then the abstraction, in this case, will not result in the best results. The conception will not be able to maintain the program for a long time. Essentially, based on the above case of the car class base, when after some months, another developer introduces a bus as a subclass to the primary class- car, it means the developer will consider the bus as a car. However, as parameters change, and other new parameters are added, the abstractions begin to behave weirdly; in this case, it cannot be used universally again. The code can now not be understood because the primary class is different from some of the subclasses, making it difficult for the user to understand the first level of abstraction, close to reality.
References
Wigmore, I (2019). Abstraction. Web. Accessed on 21/9/2020

