Linear algebra 



Given the plane(x, -y, 0) This is the plane that is parallel with the Z axis and intersects the x,y plane athrough the line x-y=0 in 3 space do the following: 


a) show the normal vector 
As the plane is parallel with the Z axis and intersects the x,y plane through the line x-y=0 in 3 space, we know that the equation of this plane is             

                       x-y=0

i.e.,        
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Hence,

                   (1, -1, 0) is the normal vector.

NOTE: The normal vector can be obtained by taking the coefficients of x, y an z in order.


b) construct a matrix that will reflect points across this plane 
To form this matrix, we need to find the reflection point of any point P(a,b,c) through the plane x-y=0. We denote it by 
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We can find the equation of the line PP’ which is
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NOTE: PP’ is parallel with the normal vector (1,-1,0)


Assume that this line PP’ intersects the plane x-y=0 at 
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                      a*-b*=0       ……...(1)

Secondly, we have
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Hence, by (1)(2), we have
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As 
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 is the midpoint of PP’, we have
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Hence,
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Therefore, to reflect a point P(a,b,c) through the plane x-y=0, we get the reflection point 
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Namely, they exchange the x,y coordinates and have the same z-coordinate.

So,
             T(x,y,z)=(y,x,z)

Hence, the matrix is
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It is easy to see that
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c) Compute the eigen values for this matrix 
To compute the eigen-values for this matrix, we calculate the characteristic equation as follows.

                  
[image: image19.wmf]0

1

|

|

l

l

-

=

-

I

T

    
[image: image20.wmf]0

1

l

-

    
[image: image21.wmf]0

1

0

0

=

-

l


i.e.,
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So, we get three eigen-values as follows.
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d) compute the eigen vectors for these eigen values
To compute the eigen vectors for these eigen values, we need to solve the following equations.

(1) For 
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[image: image26.wmf]ç

ç

ç

è

æ

-

=

-

0

1

1

)

(

x

I

T

    
[image: image27.wmf]0

1

1

-

    
[image: image28.wmf]0

1

0

0

=

÷

÷

÷

ø

ö

x

. It is not hard to see that there is only one linearly independent eigen-vector
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(2)  For 
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. It is easy to see one non-zero solution is        
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which is an eigenvector for 
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